摘要:
The invention relates to a semiconductor device with a substrate (11) and a semiconductor body (11) comprising a bipolar transistor with an emitter region (1), a base region (2) and a collector region (3) comprising a first, a second and a third connection conductor, which emitter region (1) comprises a mesa-shaped emitter connection region (IA) provided with spacers (4) and adjacent thereto a base connection region (2A) comprising a conductive region (2AA) of poly crystalline silicon. In a device (10) according to the invention, the base connection region (2A) comprises a further conducting region (2AB), which is positioned between the conductive region (2AA) of poly crystalline silicon and the base region (2) and which is made of a material with respect to which the conducting region (2AA) of polycrystalline silicon is selectively etchable. Such a device (10) is easy to manufacture by means of a method according to the invention and its bipolar transistor possesses excellent RF properties.
摘要:
Disclosed is a bipolar transistor and a method of forming the transistor, where the transistor includes a collector (12) in a substrate (10), an intrinsic base (14) above the collector, an extrinsic base adjacent the intrinsic base, and an emitter (130) above the intrinsic base. The extrinsic base includes extrinsic base implant regions (82, 172, 192) adjacent the intrinsic base, when viewed in cross-section. The transistor is formed by patterning an emitter pedestal (50) for the lower portion of the emitter on the substrate above the intrinsic base. The extrinsic base is formed in regions not protected by the emitter pedestal. Subsequently, the emitter, associated spacers (180) and a silicide region (220) are formed. The silicide, extrinsic base and emitter are all self-aligned with each other.
摘要:
The invention relates to a semiconductor device with a substrate (11) and a semiconductor body (11) comprising a bipolar transistor with an emitter region (1), a base region (2) and a collector region (3) comprising a first, a second and a third connection conductor, which emitter region (1) comprises a mesa-shaped emitter connection region (IA) provided with spacers (4) and adjacent thereto a base connection region (2A) comprising a conductive region (2AA) of poly crystalline silicon. In a device (10) according to the invention, the base connection region (2A) comprises a further conducting region (2AB), which is positioned between the conductive region (2AA) of poly crystalline silicon and the base region (2) and which is made of a material with respect to which the conducting region (2AA) of polycrystalline silicon is selectively etchable. Such a device (10) is easy to manufacture by means of a method according to the invention and its bipolar transistor possesses excellent RF properties.
摘要:
A task is to provide a simple method for obtaining a bipolar transistor being free of current gain dispersion and having a lowered base resistance. The method of the present invention comprises forming a base layer on a semiconductor substrate, and then forming in an insulating film stacked on the base layer a base electrode lead opening and an emitter electrode lead opening at the same time, and subsequently forming a base electrode lead portion and an emitter electrode lead portion in, respectively, the base electrode lead opening and the emitter electrode lead opening.
摘要:
A high fT and fmax bipolar transistor (100) includes an emitter (104), a base (120), and a collector (116). The emitter has a lower portion (108) and an upper portion (1.12) that extends beyond the lower portion. The base includes an intrinsic base (140) and an extrinsic base (144). The intrinsic base is located between the lower portion of the emitter and the collector. The extrinsic base extends from the lower portion of the emitter beyond the upper portion of the emitter and includes a continuous conductor (148) that extends from underneath the upper portion of the emitter and out from underneath the upper portion of the emitter. The continuous conductor provides a low electrical resistance path from a base contact (not shown) to the intrinsic base. The transistor may include a second conductor (152) that does not extend underneath the upper portion of the emitter, but which further reduces the electrical resistance through the extrinsic base.
摘要:
A semiconductor device includes a low resistance semiconductor substrate (10), a high resistance semiconductor layer (12, 16) formed on the substrate, an insulation layer (28, 38, 40) formed on the semiconductor layer, and a transistor element composed of a collector region (14), a base region (18), and an emitter region (20) formed in the semiconductor layer. The device further includes an emitter electrode (E) formed in the insulation layer to be connected to the emitter region, a sub-emitter electrode (SE) formed in the insulation layer connected to the emitter electrode, a low resistance impurity-diffusion region formed in the semiconductor layer such that the sub-emitter electrode is connected to the substrate through the impurity-diffusion region, a base electrode (B) formed in the insulation layer to be connected to the base region, and a base-bonding pad (BP) formed on the insulation layer to be connected to the base electrode. The base-bonding pad is placed on the insulation layer above the impurity-diffusion region to be at least partially encompassed with the impurity-diffusion region.
摘要:
The invention relates to a bipolar transistor (20) and to a method for producing the same. In order to obtain an as low a transition resistance as possible between the feed line (51) and the base (42), an intermediate layer (70) is provided between the first (30) and the second (40) layer, said intermediate layer (70) being selectively etchable to the second layer (40). At least in the zone of the undercut (43) between the feed line (51) and the base (42) a base connection zone (45) is provided that can be adjusted independent of other production conditions. The inventive transistor is further characterized in that the intermediate layer (70) is removed in the contact zone (46) with the base (42).
摘要:
The bipolar transistor is produced in such a way that a connecting region of its base (B) is fitted with a silicide layer (SD) so that a base resistor of the bipolar transistor is small. No silicide layer is produced between an emitter (E) and a contact (KE) of said emitter (E) and between a connecting region (A) of a collector (C) and a contact (K3) of said collector (C). The base (B) is produced by in-situ doped epitaxy in a region in which a first insulating layer (I1) is removed by isotropic etching so that the connecting region of the base (B) disposed on the first insulating layer (I1) is underetched. In order to prevent defects of a substrate (1) in which the bipolar transistor is partly produced, isotropic etching is used to structure auxiliary layers (H1, H3), whereby etching is performed selectively with respect to the auxiliary layers (H2, SP) disposed thereon, which are structured by anisotropic etching.