摘要:
A method of fabricating a thin film battery may comprise: depositing a first stack of blanket layers on a substrate, the first stack comprising a cathode current collector, a cathode, an electrolyte, an anode and an anode current collector; laser die patterning the first stack to form one or more second stacks, each second stack forming the core of a separate thin film battery; blanket depositing an encapsulation layer over the one or more second stacks; laser patterning the encapsulation layer to open up contact areas to the anode current collectors on each of the one or more second stacks; blanket depositing a metal pad layer over the encapsulation layer and the contact areas; and laser patterning the metal pad layer to electrically isolate the anode current collectors of each of the one or more thin film batteries. For electrically non-conductive substrates, cathode contact areas are opened-up through the substrate.
摘要:
An apparatus includes a first conductive substrate (e.g., a metal foil) having a first surface; a plurality of conductive stalks (e.g., carbon nano-tubes) extending from the first surface; an electrically insulating coating (e.g., sulfur) about the carbon stalks; a second conductive substrate (e.g., a lithium oxide foil); and an electrolyte (e.g., a polymer electrolyte) disposed between the first surface of the first conductive substrate and the second conductive substrate. In various embodiments: the sulfur is disposed at a thickness of about 3 nanometers+/−1 nanometer; the stalks are at a density such that a gap between them as is between 2 and 200 diameters of an ion transported through the electrolyte; and there is a separator layer within the electrolyte having a porosity amenable to passage by such ions. Also detailed is a method for making the foil with the coated carbon nano-tubes.
摘要:
A sputtering target having a composition of LiCoO 2 , wherein a resistivity of the target is 100 Ωcm or less, and a relative density is 80% or higher. The sputtering target of the present invention is effective for use in forming a positive electrode thin film in all-solid-state thin-film lithium ion secondary batteries equipped in vehicles, information and communication electronics, household appliances, and the like.
摘要:
A system and method of forming a thin film battery includes a substrate, a first current collector formed on the substrate, a cathode layer formed on a portion of the first current collector, a solid layer of electrolyte material formed on the cathode layer, a silicon-metal thin film anode layer formed on the solid layer of electrolyte material and a second current collector electrically coupled to the silicon-metal thin film anode layer. A method and a system for forming the thin film battery are also disclosed.
摘要:
A method of fabricating a thin film battery may comprise: depositing a first stack of blanket layers on a substrate, the first stack comprising a cathode current collector, a cathode, an electrolyte, an anode and an anode current collector; laser die patterning the first stack to form one or more second stacks, each second stack forming the core of a separate thin film battery; blanket depositing an encapsulation layer over the one or more second stacks; laser patterning the encapsulation layer to open up contact areas to the anode current collectors on each of the one or more second stacks; blanket depositing a metal pad layer over the encapsulation layer and the contact areas; and laser patterning the metal pad layer to electrically isolate the anode current collectors of each of the one or more thin film batteries. For electrically non-conductive substrates, cathode contact areas are opened-up through the substrate.
摘要:
[TECHNICAL PROBLEM] There is provided a negative electrode for an electric device such as a Li ion secondary battery capable of exhibiting well-balanced characteristics of a high cycle property and a high initial capacity. [SOLUTION TO PROBLEM] The negative electrode for an electric device includes a current collector and an electrode layer containing a negative electrode active material, a conductive auxiliary agent and a binder and formed on a surface of the current collector, wherein the negative electrode active material contains an alloy represented by the following formula (1): Si x Sn y M z A a (in the formula (1), M is at least one metal selected from the group consisting of Al, V, C and a combination thereof, A is inevitable impurities, and x, y, z and a represent mass percent values and satisfy the conditions of 0