Abstract:
A system and method of forming a wear resistant composite material includes placing a porous wear resistant filler material in a mold cavity and infiltrating the filler material with a matrix material by heating to a temperature sufficient to melt the matrix material, then cooling the assembly to form a wear resistant composite material. The system and method can be used to form the wear resistant composite material on the surface of a substrate, such as a part for excavating equipment or other mechanical part. One suitable matrix material may be any of a variety of ductile iron alloys.
Abstract:
A method for manufacturing an impregnated segment includes forming a base tier by depositing one or more layers of molten metallic material. The base tier has a plurality of cavities. The method further includes inserting at least one superhard particle into each cavity and forming an additional tier on top of the base tier by depositing one or more layers of the molten metallic material. The additional tier has a plurality of cavities. The method further includes repeating the insertion of the superhard particles and the formation of additional tiers to form an impregnated cage.
Abstract:
The present invention provides a method for producing B4C/Al neutron-absorbing material sheet by continuous cast rolling including the steps of: 1) providing B4C particles and aluminum matrix melt, adding the B4C particles into the aluminum matrix melt while stirring the composite of the B4C particles and the aluminum matrix melt; 2) applying an electromagnetic field to the B4C particle-containing aluminum matrix melt passing through a headbox; 3) applying an ultrasonic vibration to the B4C particle-containing aluminum matrix melt passing through a casting nozzle; and 4) conducing twin roll continuous cast rolling on the B4C particle-containing aluminum matrix melt from the casting nozzle to obtain B4C/Al neutron-absorbing material sheet. The method of the present invention uses twin roll continuous cast rolling under coupled ultrasonic and electromagnetic oscillation to rapidly cool and refine the grains of the solidified composite material and realize uniform distribution of B4C particles in the aluminum matrix.
Abstract:
Methods of forming dispersoid hardened metallic materials are provided. In an exemplary embodiment, a method of producing dispersoid hardened metallic materials includes forming a starting composition with a base metal component and a dispersoid forming component. The starting composition includes the base metal component in an amount from about 50 to about 99.999 weight percent and the dispersoid forming component in an amount from about 0.001 to about 1 weight percent, based on the total weight of the starting composition. A starting powder is formed from the starting composition, and the starting powder is fluidized with a fluidizing gas for a period of time sufficient to oxidize the dispersoid forming component to form the dispersoid hardened metallic material. The dispersoid forming component is oxidized while the starting powder is a solid.
Abstract:
A turbomachine component and method for fabricating the turbomachine component are provided. The turbomachine component may include a matrix material and carbon nanotubes combined with the matrix material. The matrix material may include a metal or a polymer. The carbon nanotubes may be contacted with the metal to form a metal-based carbon nanotube composite, and the metal-based carbon nanotube composite may be processed to fabricate the turbomachine component.
Abstract:
Use of Ca in metal matrix composites (MMC) allows for incorporation of small and large amounts of ceramic (e.g. rutile Ti02) into the metal (Al, or its alloys). Calcium remains principally out of the matrix and is part of a boundary layer system that has advantages for integrity of the MMC. Between 0.005 and 10 wt. % calcium (Ca) may be included, and more than 50 wt. % of rutile has been shown to be integrated. Rutile may therefore be used to reduce melt loss due to calcium from an aluminum or aluminum alloy melt.
Abstract:
According to one embodiment of the present invention, an alloy casting material is provided. The alloy casting material comprises a base metal and an alloying element, and nanometer-sized oxide particles break down in the base metal such that a band structure or a network structure is formed by a novel phase comprising the alloying element and the metal element constituting the oxide particles, and the alloying element and the metal element have a negative heat of mixing relationship, and oxygen atoms formed by breakdown of the oxide particles are dispersed in the base metal and do not form oxides with the base metal.