Abstract:
A three-dimensional scanner incorporates a flat stage for receiving samples. The stage is supported in a scanning frame by four identical quadrant tube piezo-electric scanner elements. Each element is fixed at one end to a fixed chassis and is fastened at its opposite end through a connector to the scanner frame. The scanner elements are operated in pairs to move the stage in an X-Y plane, and are operated together to move the stage in a Z direction perpendicular to the X-Y plane.
Abstract:
A single stage microactuator for multidimensional actuation is provided. The single stage microactuator includes a substrate, a fixed plate electrode, a rectangular stage, a plurality of drive frame parts each having a plurality of drive frames, first spring parts each having a plurality of spring members and a plurality of spring holding members, a plurality of fixed frame parts, drive comb electrodes, fixed comb electrodes, and second spring parts. The microactuator enables multidirectional actuation with only one electrode and can be manufactured by a simple process without a need for an insulation process and coupling of motions in different directions does not occur due to multi-folded spring structure.
Abstract:
In a probe microscope 120 for causing a sample 112 and a tip portion 118a of a probe 118 on the sample side to approach each other, detecting an interaction between the sample 112 and the sample-side probe tip portion 118a, and obtaining surface information of the sample 112 from the interaction, the probe 118 being a flexible needle-like probe; the probe microscope 120 comprises vibrating means 122 capable of rotating the probe 118 while flexing the sample-side tip portion 118a thereof so as to draw a circle having a size corresponding to an increase and decrease in the interaction between the sample surface 112 and the tip portion 118a, and detecting means 124 for detecting the increase and decrease in the size of the circle drawn by the sample-side probe tip portion 118a due to the interaction and obtaining, from the increase and decrease in the size of the circle, information about the distance between the sample 112 and the sample-side probe tip portion 118a.
Abstract:
High precision force imparting and/or a force (including weight) and displacement measuring/indicating device which includes a multi-plate capacitor transducer system (104). The transducer may be used for both applying and measuring the applied force during microindentation or micro hardness testing, and for imaging before and after the testing to achieve an atomic force microscope type image of a surface topography before and after indentation testing.
Abstract:
A machining, recording, or reproducing apparatus using a scanning probe microscope comprising: a probe 1 equipped with a probe tip at its front end, a vibration application portion consisting of a piezoelectric vibrating body 2 and an AC voltage-generating portion 3, a vibration-detecting portion consisting of a quartz oscillator 4 and a current/voltage amplifier circuit 5, a coarse displacement means 6 for bringing the probe close to a surface of a sample, a sample-to-probe distance control means consisting of a Z fine displacement element 11 and a Z servo circuit 12, a two-dimensional scanning means consisting of an XY fine displacement element 13 and an XY scanning circuit 14, and a data-processing means 15 for converting a measurement signal into a three-dimensional image. The probe 1 is held to the quartz oscillator 4 by resilient pressure.
Abstract:
A three-dimensional scanner incorporates a flat stage for receiving samples. The stage is supported in a scanning frame by four identical quadrant tube piezo-electric scanner elements. Each element is fixed at one end to a fixed chassis and is fastened at its opposite end through a connector to the scanner frame. The scanner elements are operated in pairs to move the stage in an X-Y plane, and are operated together to move the stage in a Z direction perpendicular to the X-Y plane.
Abstract:
In a scanning force microscope, a thin film of a magnetic material (46) is applied to the back surface of a force sensing cantilever (48). A small solenoid (62) is placed near the cantilever (48) so as to generate a field (B) normal to the soft axis of the cantilever (48). The field (B) is generated by an ac voltage source (66) and causes a time varying force to be applied to the cantilever (48). The corresponding modulation of a cantilever's position is sensed by reflection of a laser beam (58) into a position sensitive detector (60). The magnitude and phase of this signal are determined by a synchronous detector (68). Images of the sample surface (52) are made at constant force gradient by scanning the cantilever (48) over the surface (52) while adjusting the gap between the probe (64) and the sample (54) so as to maintain a constant output from the synchronous detector (68).