Abstract:
An antibacterial cosmetic brush bristle material made of a polyester resin filament that has irregularities formed on its surface and comprises 70.0 to 90.0 percent by weight of polytrimethylene terephthalate, 29.2 to 9.9 percent by weight of polybutylene terephthalate, and 0.8 to 0.1 percent by weight of inorganic particles constituting silver-containing soluble glass; a cosmetic brush using such bristle material; and a method of manufacturing such brush.
Abstract:
The invention relates to a process for fabricating a high-precision object made of at least one inorganic material, comprising the following steps: using a high-resolution photolithography process, employing X-rays or UV rays depending on the desired degree of precision, in a chosen direction Z, to form a negative mould, which does not deform at the microscale during the steps of the process, in a material able to withstand a step for forming the object by dry deposition and possibly either being removed without altering the object fabricated or being separated from said object; choosing, independently of the normal redox potential of its constituent elements, at least one inorganic material from the set of materials that can be deposited by dry deposition and that allow the object to be fabricated to meet its thermomechanical and environmental specifications; and forming, by means of the non-deformable negative mould, the object to be fabricated by dry deposition of said at least one inorganic material, thereby allowing an object to be fabricated with better than microscale precision, especially with respect to the angle between the walls generated by the dry deposition and said direction Z. The invention is preferably applied to the fabrication of high-precision micromechanical objects, in particular in the aeronautical and clock/watch-making fields.
Abstract:
An ultrathin tellurium nanowire structure is disclosed, including a rod-like crystalline structure of tellurium, wherein the crystalline structure is defined by diameters of between 5 - 6 nm. In addition, an ultrathin tellurium-based nanowire structure is disclosed including a rod-like crystalline structure of one of lead telluride and bismuth telluride, wherein an ultrathin tellurium nanowire structure is used as a precursor to generate the rod-like crystalline structure. Furthermore, a nanoscale heterostructure tellurium-based nanowire structure is disclosed including a dumbbell-like crystalline heterostructure having a center rod-like portion and one octahedral structure connected to each end of each of the center rod- like portions, wherein the center rod-like portion is a tellurium-based nanowire structure and the octahedral structures are one of lead telluride, cadmium telluride, and bismuth telluride.
Abstract:
Barbed medical devices include a multifilament elongate body and a monofilament fragment. The multifilament elongate body has an outer surface. The monofilament fragment has a first portion positioned within the multifilament elongate body and at least a second portion which extends beyond the outer surface of the multifilament elongate body to form a barb.
Abstract:
A method of forming an adhesive force includes removing a seta from a living specimen, attaching the seta to a substrate, and applying the seta to a surface so as to establish an adhesive force between the substrate and the surface. The seta is applied to the surface with a force perpendicular to the surface. The seta is then pulled with a force parallel to the surface so as to preload the adhesive force of the seta.
Abstract:
An article of manufacture for warming human extremities via graduated thermal insulation with a blanket comprised of concentrations of and transitions to and from concentrations of various types of woven thread fabric or non-woven fabric, having various properties of thermal insulation.