Abstract:
An integrated process for producing an ester of 2,5-furandicarboxylic acid from a six carbon sugar-containing feed, comprising: e) dehydrating a feed comprising a six-carbon sugar unit, in the presence of a bromine source and of a solvent, at an elevated temperature and for a time sufficient to generate an oxidation feed comprised of at least one of 5-hydroxymethylfurfural and/or a derivative or derivatives of 5-hydroxymethylfurfural in the solvent, together with at least one bromine containing species; f) contacting the oxidation feed from step (a) with a homogenous metal catalyst and with an oxygen source at an elevated temperature for a time sufficient to produce an oxidation product mixture comprising 2,5-furandicarboxylic acid (FDCA), the solvent, and a residual catalyst; g) purifying and separating the mixture obtained in step (b) to obtain FDCA and the solvent; h) recycling at least a portion of the solvent obtained in step (c) to step (a); and e) esterifying 2,5-furandicarboxylic acid with a C 1 -C 12 aliphatic alcohol or a C 1 -C 12 aliphatic diol, under conditions effective for carrying out the esterification and optionally in the presence of a suitable esterification catalyst.
Abstract:
The present invention relates to a method for selective hydrogenation of furan-2,5-dialdehyde (DFF) into 2,5-di(hydroxymethyl)furan (DHMF) and into 2,5-di(hydroxymethyl)tetrahydrofuran (DHMTHF). In relation to the prior art, which uses C6 sugars or 5-hydroxymethyl furaldehyde (5-HMF) as raw materials, said method can be performed at low temperatures (lower than 120 °C, preferably 80 °C), while consuming low amounts of catalyst relative to the initial reagent (in particular less than 5 %, preferably less than 2 % relative to the weight of the reagent). The heterogeneous catalyst used can also be recycled from one reaction to another. Finally, the choice of experimental conditions enables the selective formation of DHMF or DHMTHF.
Abstract:
Disclosed is a process to produce a dry purified carboxylic acid product comprising furan-2,5-dicarboxylic acid (FDCA). The process comprises oxidizing at least one oxidizable compound selected from the following group: 5-(hydroxymethyl)furfural (5-HMF), 5-HMF esters (5-R(CO)OCH2-furfural were R alkyl, cycloalkyl and aryl), 5-HMF ethers (5-R′OCH2-furfural, where R′=alkyl, cycloalkyl and aryl), 5-alkyl furfurals (5-R″-furfural, where R″=alkyl, cycloalkyl and aryl), mixed feed-stocks of 5-HMF and 5-HMF esters and mixed feed-stocks of 5-HMF and 5-HMF ethers and mixed feed-stocks of 5-HMF and 5-alkyl furfurals to generate a crude carboxylic acid slurry comprising FDCA.
Abstract:
The present invention provides compounds of Formulae (A), (B), (C), and (D), pharmaceutically acceptable salts, solvates, hydrates, polymorphs, co-crystals, tautomers, stereoisomers, isotopically labeled derivatives, and prodrugs thereof, pharmaceutical compositions thereof, and kits thereof. The present invention further provides methods of using the compounds to treat or prevent neurological disorders. In one aspect, the methods include administering to a subject in need of treatment for a neurological disorder a therapeutically effective amount of DAC-001, DAC-002, DAC-003, DAC-009, or DAC-012, or a compound of Formula (A), (B), (C), or (D).
Abstract:
Antimitotic agents comprising a modified chalcone or modified chalcone derivative are disclosed. The modified chalcone or modified chalcone derivative compounds are of the general formula CHAL-LIN-COV, wherein CHAL is a chalcone or chalcone derivative portion, LIN is an optional linker portion, and COV is a covalent bonding portion (e.g., an a,ss-unsaturated thiol ester group). The modified chalcone or modified chalcone derivative compounds provide an improved method of interference with tubulin polymerization, for example by covalent (and essentially irreversible) bonding between tubulin and the covalent bonding portion, potentially resulting in a decrease in tumor size and/or disappearance of the cancer, to the benefit of cancer patients.
Abstract:
Antimitotic agents comprising a modified chalcone or modified chalcone derivative are disclosed. The modified chalcone or modified chalcone derivative compounds are of the general formula CHAL-LIN-COV, wherein CHAL is a chalcone or chalcone derivative portion, LIN is an optional linker portion, and COV is a covalent bonding portion (e.g., an α,β-unsaturated thiol ester group). The modified chalcone or modified chalcone derivative compounds provide an improved method of interference with tubulin polymerization, for example by covalent (and essentially irreversible) bonding between tubulin and the covalent bonding portion, potentially resulting in a decrease in tumor size and/or disappearance of the cancer, to the benefit of cancer patients.