Abstract:
A method of making a porous metal matrix composite is provided. The method includes mixing a metal powder, a plurality of inorganic particles, and a plurality of discontinuous fibers to form a mixture, wherein the metal powder comprises aluminum, magnesium, an aluminum alloy, or a magnesium alloy. The method further includes sintering the mixture to form the porous metal matrix composite. Typically, the inorganic particles comprise porous particles or ceramic bubbles or glass bubbles, and the inorganic particles and the discontinuous fibers are dispersed in the metal. The metal matrix composite has a lower density than the metal and an acceptable yield strength.
Abstract:
Discontinuous fiber preforms, fiber-reinforced metal matrix composites, and methods of making same are disclosed. A fiber preform includes a milled fiber material having a weighted average fiber length of about 0.03 mm to 0.12 mm and/or a percent fiber volume fraction of the fiber preform of about 15% to about 55%. The milled fiber material is at least substantially free of a binder material. A fiber-reinforced MMC includes a milled fiber material having a weighted-average fiber length of about 0.03 mm to 0.12 mm and/or a percent fiber volume fraction of the fiber preform of about 15% to about 55%. The fiber-reinforced MMC further includes a metal infiltrated into the milled fiber material. The milled fiber material is at least substantially free of a binder material. The milled fiber can be substantially uniformly oriented and/or randomly oriented in the fiber preform and/or the fiber-reinforced MMC.
Abstract:
The present invention relates to a process for manufacturing a composite material comprising functionalized carbon nanotubes and a metal matrix, to a process for manufacturing an elongated electrically conductive element, and to an electrical cable comprising such an elongated electrically conductive element.
Abstract:
A composite metal material includes a carbon-based material in a matrix of a metal-based material. The carbon-based material has a first bonding structure in which an element X bonds to a carbon atom on a surface of a carbon material. The matrix includes an amorphous peripheral phase containing aluminum, nitrogen, and oxygearound the carbon-based material. The element X includes at least one element selected from boron, nitrogen, oxygen, and phosphorus.
Abstract:
A metal matrix composite comprises essentially-aligned, fine-diameter inorganic oxide fibres embedded in a metal matrix material such as a light metal, for example aluminium or magnesium or an alloy thereof. In a particular embodiment the fibres are nominally-continuous and preferably are of mean diameter below 5 microns. The composite can be made by liquid infiltration of a fibre preform comprising the fibres bound together with an inorganic or an organic binder or (in the case of short fibres) by extrusion of a mixture, for example a suspension, of the fibres and powdered metal matrix material.
Abstract:
A method of forming a metal matrix composite component includes positioning a preform including an electrically non-conductive fibrous material in a shaping tool. The fibrous material is pre-coated. The method includes flowing a molten metal comprising zinc into the shaping tool so that at least a portion of the preform is enveloped by the molten metal to form the metal matrix composite component; and cooling the metal matrix composite component.