Abstract:
A method and apparatus for uniformly and directionally aligning and stretching nanofibers inside a porous medium is described. The nanofibers may include nanotubes, nanowires, long-chain polymer molecules or likewise. Porous medium may include a porous layer, fabric, or composite prepreg or likewise. According to one embodiment, an apparatus for directional alignment of nanofiber in a porous medium includes a fluid matrix with nanofibers. A porous medium is provided as well as a device for forcing the fluid matrix radially through the porous medium.
Abstract:
The invention relates to a method for producing a composite component, said composite component being made of a matrix composite material made of a reinforcing material and a matrix material. The reinforcing material is coated with pyrolytic carbon, and a preform is made from the reinforcing material. The reinforcing material is coated with the pyrolytic carbon in order to produce the pre-form. The pyrolytic carbon is deposited on the reinforcing material from the gas phase. The pre-form at least partly has an open pore structure, said open pore structure being infiltrated with the matrix material, thus forming the composite component. The invention further relates to an alternative method for producing a composite component, wherein the pyrolytic carbon is deposited on the reinforcing material from the gas phase, a mixture of the reinforcing material and the matrix material is formed, and the composite component is formed by sintering the mixture.
Abstract:
The invention relates to a method for producing a component made of a composite material (MMC) comprising a metallic matrix forming material which is reinforced with incorporated fibres or particles consisting in producing a semifinished material (20) containing fibres (16) or particles and a metallic matrix material (24). Afterwards, a shaping is carried out by thixomoulding in a tool whose temperature is higher than a solidus temperature and lower than a liquidus temperature of said metallic matrix material.
Abstract:
A method of pressure forming a metal matrix composite (MMC), comprises: placing a fibre preform (not shown) into a die cavity (14) defined by a split die (12); introducing molten metal into the die cavity (14) through a sprue (16) to envelope the fibre preform; sealing the sprue (16); applying pressure direct to molten metal in the die cavity (14) with a mechanical compaction piston (18) to encourage infiltration of the fibre preform during solidification.
Abstract:
Golf club structures, including club heads and shafts, composed of composites comprised of a matrix of metal, such as an aluminum alloy, or a plastic material and a fiber such as graphite or a ceramic, which may be whiskerized, and which may also be selectively weighted as in the toe and heel of a club head, with heavy particles such as tungsten metal. The club structure may also be surface hardened by applying a coating of fullerenes to a metal club structure and heat treating it to produce a hard coating of metal carbide, preferably by coating a titanium golf club structure with fullerenes and heat treating the coated structure to produce a titanium carbide surface.
Abstract:
A quantity of reinforcing material is formed into a shaped mass bound together by an inorganic binder. This shaped mass is compounded with a quantity of a molten matrix metal by a pressure casting method. The molten matrix metal includes a quantity of a certain element with a strong tendency to become oxidized, and the inorganic binder includes a metallic oxide which, when brought into contact at high temperature with this certain element, is reduced thereby in an exothermic reaction. During the pressure casting, extra heat is produced as the certain element reduces the metallic oxide, and this aids good penetration of the matrix metal into the interstices of the reinforcing material. The metal remaining from the oxide is dispersed in the matrix metal. This metallic oxide may be silica, zirconia, chromium oxide, yttrium oxide, cerium oxide, ferric oxide, zirconium silicate, antimony oxide, or a mixture thereof; and the certain element may be lithium, calcium, magnesium, aluminum, beryllium, titanium, zirconium, or a mixture thereof.
Abstract:
A method of forming a metal matrix composite component includes positioning a preform including an electrically non-conductive fibrous material in a shaping tool. The fibrous material is pre-coated. The method includes flowing a molten metal comprising zinc into the shaping tool so that at least a portion of the preform is enveloped by the molten metal to form the metal matrix composite component; and cooling the metal matrix composite component.
Abstract:
The present application discloses a ceramic preform, a method of making a ceramic preform, a MMC comprising a ceramic preform, and a method of making a MMC. The method of making a ceramic preform generally comprises preparing reinforcing fibers, preparing a ceramic compound, and forming the compound into a desired shape to create the ceramic preform. In certain embodiments, the ceramic compound is formed as either a disc or a ring for use in a brake disc metal matrix composite. The metal matrix composite generally comprises the ceramic preform infiltrated with a molten metal to form the brake disc metal matrix composite. The method of making the metal matrix composite generally comprises heating the ceramic preform, placing the ceramic preform in a mold cavity of a die cast mold, and introducing molten metal into the mold cavity to infiltrate the ceramic preform to form the brake disc metal matrix composite.
Abstract:
There is provided an apparatus and method for manufacturing of an infiltrated fiber-based composite film. The apparatus comprises two tool blocks arranged opposite each other enabling a fiber-based film to be arranged between the tool blocks. At least one of the tool blocks comprises a recess so that the recess can form a sealed cavity enclosing a portion of the film when the tool blocks are in contact with each other. At least one of the tool blocks comprises a vacuum channel connecting cavity to a vacuum pump for drawing a vacuum in the cavity; a melt channel connecting the cavity to a source of molten material. The melt channel comprises a valve arrangement controlling delivery of the molten material to the cavity; pressure means to achieve an elevated pressure onto the molten material within the cavity such that a fiber film in the cavity is infiltrated by the molten material; and an ejection piston for ejecting an infiltrated fiber film from the cavity.
Abstract:
The present application discloses a ceramic preform, a method of making a ceramic preform and a metal matrix composite comprising a ceramic preform. In one exemplary embodiment, the ceramic preform comprises a ceramic compound compressed into the shape of a cylinder by rotational compression molding. The cylinder has an inner surface and an outer surface. A first liner may be attached to the inner surface of the cylinder and a second liner may attached to the outer surface of the cylinder. The metal matrix composite of the present application may be formed as a brake drum or a brake disc.