摘要:
An electron source capable of suppressing consumption of an electron emission material is provided. The present invention provides an electron source (1) including: an electron emission material (3) and an electron emission-suppressing material (4) covering a side surface (3b) of the electron emission material (3), wherein the electron emission material (3) comprises at least one selected from the group consisting of lanthanum boride and cerium boride, and the electron emission-suppressing material (4) comprises at least one selected from the group consisting of metallic tantalum, metallic titanium, metallic tungsten, and tantalum carbide.
摘要:
A method for manufacturing an electron source according to the present disclosure includes steps of: (A) preparing a first member provided with a columnar portion made of a first material having an electron emission characteristic, (B) preparing a second member which has a higher work function and a lower strength than the first material, and in which a hole is formed extending in a direction from one end surface toward the other end surface, and (C) pushing the columnar portion into the hole in the second member, wherein the first member has a cross-sectional shape that is dissimilar to the cross-sectional shape of the hole; and in the step (C), by pressing the columnar portion into the hole, a portion of a side surface of the columnar portion scrapes the inner surface of the hole and bites into the second member, thereby fixing the columnar portion to the second member.
摘要:
At least one emitter formed of an electron emissive material is positioned on a cathode assembly and is readily and reliably connected to at least one mounting member of the cathode assembly. The connections between the at least one emitter and an emitter support structure are formed directly between the at least one emitter and the emitter support structure by utilizing the at one mounting member on the emitter support structure that are positioned adjacent the at least one emitter and heated to secure the at least one emitter to the emitter support structure by welding the at least one mounting member to the at least one emitter and emitter support structure.
摘要:
Electron sources for a cathodoluminescent lighting system are disclosed. An electron source is a broad-beam reflecting-type electron gun having a cathode for emitting electrons and a reflector and/or secondary emitter electrode and no grids. An alternative electron gun has a cathode having a heater welded to a disk, the disk having an emissive surface on a side facing a dome-shaped defocusing grid and an anode. A lighting system incorporating the electron sources has an envelope with a transparent face, an anode with a phosphor layer to emit light through the face and a conductor layer. The system also has a power supply for providing from five to thirty thousand volts of power to the light emitting device to draw electrons from cathode to anode and excite a cathodoluminescent phosphor, and the electrons transiting from cathode to anode are essentially unfocused. A power- factor-corrected embodiment is also disclosed.
摘要:
Provided is an electrode for a high pressure discharge lamp, which prevents spring-back of an electrode coil, and which has high productivity and high accuracy in positioning the coil. The electrode for the high pressure discharge lamp includes: an electrode core bar (30); and a coil (35) mounted on the electrode core bar, and is configured as follows. The electrode core bar (30) includes: a small-diameter section (31) on a power supply side; and a large-diameter section (32) on a leading end side. The large-diameter section (32) has: a large-diameter portion (32a) on the small-diameter section side; a small-diameter portion (32b) having a smaller outer diameter than the large-diameter portion, the small-diameter portion forming a step (s) with the large-diameter portion therebetween; and a leading end portion (32c). The coil (35) covers a portion between the step (s) and the leading end portion.
摘要:
A power supply for a video display tube includes a deflection transformer with a primary winding powered with a scan voltage which has a first value when displaying signal according to a first video standard and a second voltage when displaying video according to a second standard. A secondary winding of the transformer produces filament voltage for the display tube. A variable coupler couples the filament voltage to the filament of the picture tube in an amount established by a control signal. A memory produces a first control signal in response to the first scan voltage and a second control signal in response to the second scan voltage. The first and second control signals are selected so that the voltage coupled from the transformer to the filament is the same at both scan voltages.