Abstract:
The radio frequency (RF) inductor (10,10') includes a core (12,12') being electrically non-conductive and ferrimagnetic, and having a toroidal shape, and a wire coil (16,16') thereupon. At least one permanent magnet body (18,18') is at a fixed position within the interior of the core, and an electrically conductive RF shielding layer (20,20') is on the at least one permanent magnet body. The core may be ferrite for example. The electrically conductive RF shielding layer may be a conductive plating layer or a metal foil surrounding the permanent magnet body, for example. A magnetic field from the permanent magnet is applied to the inductor core to reduce losses, and the permanent magnet may be enclosed within the conductive shield to keep RF fields out. The inductor may be made small and have increased Q and resulting efficiency. The RF inductor may be applicable to RF communication circuits, for example, as an antenna coupler.
Abstract:
The wireless communication system includes a first device, e.g. a radio frequency identification (RFID) reader, having a wireless power transmitter, a first wireless data communications unit, and a first dual polarized loop antenna having isolated signal feedpoints along a first loop electrical conductor. The wireless power transmitter transmits a power signal having a first polarization, and the first wireless data communications unit communicates using a data signal having a second polarization. A second device, e.g. an RFID tag, includes a second dual polarized loop antenna. A second wireless data communications unit communicates with the first wireless data communications unit of the first device using the data signal having the second polarization. A wireless power receiver receives the power signal having the first polarization from the wireless power transmitter of the first device, and provides power for the second device.
Abstract:
A method of making a multi-chip module may include forming an interconnect layer stack on a sacrificial substrate. The interconnect layer stack may include patterned electrical conductor layers and a dielectric layer between adjacent patterned electrical conductor layers. The method may further include electrically coupling a first integrated circuit (IC) die in a flip chip arrangement to an uppermost patterned electrical conductor layer, and forming a first underfill dielectric layer between the first IC die and adjacent portions of the interconnect layer stack. The method further may include removing the sacrificial substrate to expose a lowermost patterned electrical conductor layer, and electrically coupling at a second integrated circuit die in a flip chip arrangement to the lowermost patterned electrical conductor layer. Still further, the method may include forming a second underfill dielectric layer between the second IC die and adjacent portions of the interconnect layer stack.
Abstract:
A meter reading system includes a meter reading wireless mesh network having wireless meter reading nodes in communication with an access point. Each wireless meter reading node has an address associated therewith. The meter reading wireless mesh network is configured to establish a network address field for each wireless meter reading node based upon a length field and a value field of a respective address, and communicate within the wireless mesh network using the network address fields.