Polycrystalline foams exhibiting giant magnetic-field-induced deformation and methods of making and using same
    1.
    发明授权
    Polycrystalline foams exhibiting giant magnetic-field-induced deformation and methods of making and using same 有权
    表现出巨磁场诱导变形的多晶泡沫体及其制造和使用方法

    公开(公告)号:US08586194B2

    公开(公告)日:2013-11-19

    申请号:US12840203

    申请日:2010-07-20

    Abstract: Magnetic materials and methods exhibit large magnetic-field-induced deformation/strain (MFIS) through the magnetic-field-induced motion of crystallographic interfaces. The preferred materials are porous, polycrystalline composite structures of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. The materials are preferably made from magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga, formed into an open-pore foam, for example, by space-holder technique. Removal of constraints that interfere with MFIS has been accomplished by introducing pores with sizes similar to grains, resulting in MFIS values of 0.12% in polycrystalline Ni—Mn—Ga foams, close to the best commercial magnetostrictive materials. Further removal of constraints has been accomplished by introducing pores smaller than the grain size, dramatically increasing MFIS to 2.0-8.7%. These strains, which remain stable over >200,000 cycles, are much larger than those of any polycrystalline, active material.

    Abstract translation: 磁性材料和方法通过磁场诱导的晶体界面运动表现出大的磁场诱导的变形/应变(MFIS)。 优选的材料是通过支柱连接的节点的多孔,多晶复合结构,其中支柱可以是单晶或多晶。 这些材料优选由例如通过空间保持器技术形成为开孔泡沫的多晶Ni-Mn-Ga的磁性形状记忆合金制成。 通过引入尺寸与颗粒大小相似的孔,可以去除干扰MFIS的约束,导致多晶Ni-Mn-Ga泡沫中的MFIS值为0.12%,接近最好的商业磁致伸缩材料。 通过引入小于晶粒尺寸的孔,已经进一步去除约束,使MFIS显着提高到2.0-8.7%。 这些菌株在超过20万次循环中保持稳定,远远大于任何多晶活性物质。

    Chemically induced superplastic deformation
    2.
    发明授权
    Chemically induced superplastic deformation 失效
    化学诱导超塑性变形

    公开(公告)号:US6042661A

    公开(公告)日:2000-03-28

    申请号:US820768

    申请日:1997-03-19

    CPC classification number: C22F1/00 C22F1/183

    Abstract: The invention produces superplastic deformation in a workpiece by altering the chemical composition of the workpiece material, while the workpiece is subjected to a biasing stress, in a manner that introduces a strain increment into the material that effects a change in a overall dimension of the workpiece without causing failure. In one approach, repeated cyclic alteration of chemical composition, so as to repeatedly alternately induce and reverse a phase transition that produces strain increment, allows accumulation of strain in an incremental fashion thereby achieving large overall superplastic deformations in the workpiece without applying large stresses.

    Abstract translation: 本发明通过改变工件材料的化学成分而在工件受到偏压应力的情况下,通过改变工件的超塑性变形,其方法是将应变增量引入到材料中,从而影响工件的整体尺寸的变化 而不会导致故障。 在一种方法中,化学组成的重复循环改变,以便反复交替地诱导和反转产生应变增量的相变,允许以增量方式累积应变,从而在不施加大应力的情况下实现工件中的大的整体超塑性变形。

    MAGNETIC MATERIAL WITH LARGE MAGNETIC-FIELD-INDUCED DEFORMATION
    4.
    发明申请
    MAGNETIC MATERIAL WITH LARGE MAGNETIC-FIELD-INDUCED DEFORMATION 有权
    具有大磁场诱导变形的磁性材料

    公开(公告)号:US20090092817A1

    公开(公告)日:2009-04-09

    申请号:US12203112

    申请日:2008-09-02

    Abstract: A magnetic materials construct and a method to produce the construct are disclosed. The construct exhibits large magnetic-field-induced deformation through the magnetic-field-induced motion of crystallographic interfaces. The construct is a porous, polycrystalline composite structure of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. If the struts are polycrystalline, they have a “bamboo” microstructure wherein the grain boundaries traverse the entire width of the strut. The material from which the construct is made is preferably a magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga. The construct is preferably an open-pore foam. The foam is preferably produced with a space-holder technique. Space holders may be dissolvable ceramics and salts including NaAlO2.

    Abstract translation: 公开了一种磁性材料结构和一种制备该构造体的方法。 该结构通过磁场诱导的晶体界面运动表现出大的磁场诱导变形。 该结构是通过支柱连接的节点的多孔多晶复合结构,其中支柱可以是单晶或多晶。 如果支柱是多晶的,则它们具有“竹”微结构,其中晶界穿过支柱的整个宽度。 制造构造物的材料优选为包括多晶Ni-Mn-Ga的磁性形状记忆合金。 该构造物优选为开孔泡沫。 泡沫优选用空间保持器技术制造。 空间支架可以是可溶解的陶瓷和盐,包括NaAlO 2。

    Densification via thermal treatment
    5.
    发明授权
    Densification via thermal treatment 失效
    通过热处理致密化

    公开(公告)号:US06315838B1

    公开(公告)日:2001-11-13

    申请号:US09525614

    申请日:2000-03-14

    Abstract: A method for creep cavity shrinkage and/or porosity reduction without applied stress. The thermal treatment is found to increase the rate of densification relative to isothermal annealing, allowing for more rapid recovery of desired theoretical density in a shorter time.

    Abstract translation: 一种不施加应力的蠕变腔收缩和/或孔隙率降低的方法。 发现热处理增加了相对于等温退火的致密化速率,允许在更短的时间内更快速地恢复理想的理论密度。

    Minimal thermal expansion, high thermal conductivity metal-ceramic
matrix composite
    8.
    发明授权
    Minimal thermal expansion, high thermal conductivity metal-ceramic matrix composite 失效
    最小热膨胀,高导热性金属陶瓷基复合材料

    公开(公告)号:US6132676A

    公开(公告)日:2000-10-17

    申请号:US885230

    申请日:1997-06-30

    Abstract: The invention provides techniques for forming composites including XW.sub.2 O.sub.8, where X=Zr, Hf, or a combination, dispersed within a continuous, metal matrix. A low to zero coefficient of thermal expansion material, with high thermal and electrical conductivity, results. One method for forming the composite involves coating particles of XW.sub.2 O.sub.8 with a layer of metal, then isostatically pressing the particles under conditions amenable to formation of a composite. The technique of coating, with a more malleable phase, a phase that undergoes a disadvantageous phase transformation of decomposition upon exposure to a threshold pressure at a set temperature can be applied to a variety of materials.

    Abstract translation: 本发明提供了用于形成复合材料的技术,包括分散在连续的金属基体内的XW2O8,其中X = Zr,Hf或组合。 一种低至零的热膨胀系数材料,具有较高的导热和导热性能。 形成复合材料的一种方法包括用一层金属涂覆XW2O8的颗粒,然后在适于形成复合材料的条件下等压挤压颗粒。 具有更可延展相的涂覆技术可以应用于各种材料,该相在暴露于设定温度的阈值压力时经历不利的分解相转变。

    Method for enhancing superplasticity in composites
    9.
    发明授权
    Method for enhancing superplasticity in composites 失效
    提高复合材料超塑性的方法

    公开(公告)号:US5413649A

    公开(公告)日:1995-05-09

    申请号:US99824

    申请日:1993-07-29

    Abstract: A method for inducing superplasticity in a composite including a non-transforming phase and a transforming phase by cycling the composite material through a phase transformation of the transforming phase while applying an external stress to the composite material is provided as is a method for inducing superplasticity in a titanium/titanium carbide composite. Also provided is a method for forming a part from a composite material including a transforming phase and a non-transforming phase by cycling the composite through a phase transformation of the transforming phase and shaping the composite material by applying an external stress to the composite material while the transforming phase is undergoing a phase transformation to form a finished article.

    Abstract translation: 提供了通过在复合材料施加外部应力的同时使复合材料通过相变而使复合材料包含非变形相和转变相的诱导超塑性的方法,该方法是引入超塑性的方法 钛/碳化钛复合材料。 还提供了一种通过使复合材料通过转化相的相变循环使复合材料通过向复合材料施加外部应力而使复合材料成形而从包含转化相和非转变相的复合材料形成部件的方法,同时 转化阶段正在进行相变以形成成品。

Patent Agency Ranking