Abstract:
A fuel pump is provided having improved efficiency by lowering the wet circle index of the pump while maintaining robust axial clearances to meet the demands of an automotive application. One embodiment includes a fuel pump for pressurizing fuel for delivery to an engine of a motor vehicle. The fuel pump generally comprises a housing, a motor, a single sided impeller, a cover and a body. The provision of a single sided impeller greatly reduces the wet circle index and improves the pump efficiency. The cover, impeller, and body are structured to axially balance the impeller which is free floating on the shaft of the motor.
Abstract:
A fuel delivery system is provided with a fuel solenoid valve to minimize fuel leakage and evaporative emissions during diurnal cycles by preventing pressure buildup as the temperature of the fuel system rises. The fuel solenoid valve is located between a pressurized side of the delivery system and a fuel tank. In one embodiment, the fuel solenoid valve is closed when the engine is running or when the engine is off and the rail is hot. When the fuel rail cools down, the solenoid valve opens to bleed a desired amount of fuel thereby creating a fuel vapor space. Thereafter, during hot soak conditions of the diurnal cycles when the fuel rail is hot again while the engine is off, the pressure will rise due to the thermal expansion of the fuel and the created fuel vapor space minimizes further rising of the fuel pressure. Further, by adjusting the solenoid valve opening time, the pressure rising limit may be set at a desired pressure to minimize injector leakage.
Abstract:
A ring impeller includes a central hub with a first row of vanes extending from the hub and a second row of vanes extending from the hub adjacent to and staggered from the first row of vanes. The vanes in each row are grouped to form adjacent vane pairs and a partition wall is positioned between each of the vanes within the vane pairs. A rib extends radially from the hub in alignment with the partition wall and is positioned between each vane pair. The bottom thickness of the partition wall is the same thickness as the rib. The partition wall includes a reduced material area at its forward and rear edges. The vanes in the first row are unevenly spaced and the vanes in the second row are spaced equidistantly between the vanes in the first row. The spacing of the vanes in the first row may be about 70% to about 140% of a spacing equal to an equal spacing. Some of the vanes may have a height that is less than the height of other vanes.
Abstract:
A fuel pump is provided having improved efficiency by lowering the wet circle index of the pump while maintaining robust axial clearances to meet the demands of an automotive application. One embodiment includes a fuel pump for pressurizing fuel for delivery to an engine of a motor vehicle. The fuel pump generally comprises a housing, a motor, a single sided impeller, a cover and a body. The provision of a single sided impeller greatly reduces the wet circle index and improves the pump efficiency. The cover, impeller, and body are structured to axially balance the impeller which is free floating on the shaft of the motor.
Abstract:
An impeller for a fuel pump for supplying fuel to an automotive engine from a fuel tank includes an impeller body with a plurality of vanes having a front side and a back side extending radially outward therefrom. A plurality of partitions are interposed between the vanes and extend a radially shorter distance than the vanes. The partitions and the vanes define a plurality of vane grooves. Each of the vanes includes a root which is adjacent the impeller body and a distal end. The vanes have a thickness which varies such that the vanes are thickest at the root and gradually become thinner as the vanes extend outward to the distal end. A ring portion is fitted around the impeller and connected to the distal ends of the vanes such that a plurality of extending fuel flow passages are formed between the vanes, the partitions, and the ring portion.
Abstract:
A fuel delivery module for an automotive fuel delivery system includes a reservoir and a fuel pump. The fuel pump delivers fuel from the tank to the reservoir via a fuel tank inlet and reservoir outlet and from the reservoir to the engine via a reservoir inlet and engine outlet. The reservoir is formed with a plurality of contaminant traps for collecting contaminants contained in the fuel as the fuel is pumped through the reservoir such that the contaminants settle unto said contaminant traps thereby reducing the amount of contaminants entering the reservoir inlet.
Abstract:
A fuel pump has a motor with a shaft extending therefrom and an impeller fitted thereon for pumping fuel from a fuel tank to an internal combustion engine. A pumping chamber, which encases the impeller, is comprised of a cover channel and a bottom channel formed in a pump cover and a pump bottom, respectively. The impeller has a plurality of radially extending vanes on an outer circumference separated by partitions of shorter radial length. The partitions are comprised of quarter-circle shaped arcuate portions extending from the outer circumference of the impeller to a straight portion having parallel sides, which preferably extend approximately 0.1 millimeters to 0.5 millimeters, to a flat top with rounded corners. Fluid active vane grooves thus formed circumferentially between the vanes and axially between the partitions which reduce fuel vortices angular acceleration within the pumping chamber thus increasing pump efficiency.
Abstract:
A fuel pump has a pump cover with an inlet through which fuel from a fuel tank is drawn by an impeller to a pumping chamber formed by a pump bottom and the pump cover. The inlet has divergent sides oriented such that fuel being pumped is routed radially outward of primary vortices in a section of the pumping chamber adjacent the inlet to a section of the pumping chamber opposite the inlet. In a first embodiment, the upper side of the inlet is oriented at approximately a 10 to 12 degree angle from the lower side. In a second embodiment, the upper side is oriented at approximately a 127 degree angle from a line parallel the shaft rotation, and the lower side is oriented at approximately a 139 degree angle from the same line.
Abstract:
A rotodynamic fuel pump in a fuel delivery system for an internal combustion engine including a pump housing, a pump inlet channel extending through the housing allowing fuel to be drawn into the pump, a purge orifice extending through the housing and spaced away from the pump inlet channel, the purge orifice allowing fuel vapor to exit the pump, the purge orifice including a purge inlet, a purge outlet, and a purge channel, where the purge inlet is axially offset from the purge outlet.
Abstract:
The present invention provides a system for controlling speed of the fuel pump. The system includes a fuel pump, a controller, and a field modification module. The fuel pump is configured to receive a driving signal causing the fuel pump to pump fuel. The controller is configured to determine a desired fuel pump speed and generate a control signal based on the desired fuel pump speed. The field modification module is located proximate the fuel pump and is in communication with the controller to receive the control signal. The field modification module generates a flux in response the control signal thereby controlling speed and torque of the fuel pump.