摘要:
The earth's magnetic field has not been mined as a source of energy. With average field strength of 0.5×10−4 Tesla around the world it is easy to understand why. A disruptive technology is needed to mine the earth's magnetic field. Such a technology, graphene, is now at an early stage of development with excellent properties in the form of high conductivity, low resistivity, durable, light weight, low cost sheets. Multiple sheets of graphene provide a significant multiplier to earth's magnetic field yielding a feasible source of ecologically clean power. Graphene based EcoCharge units can be driven by electric motors putting graphene in motion to mine the earth's magnetic field. Estimates show that for a Solar Impulse 2 like electric plane, eight EcoCharge units weighing 64 lbs generate 60 kW RMS continuously replacing 3,000 lbs of photovoltaic cells generating 50 kW RMS during the day only.
摘要:
The earth's magnetic field has not been mined as a source of energy for electric vehicles. With average field strength of 0.5 Tesla around the world it is easy to understand why it has been overlooked. A disruptive technology is needed to mine the earth's magnetic field for powering electric vehicles. Such a technology, graphene, is now at an early stage of development with excellent properties in the form of high conductivity, low resistivity sheets that are durable, light weight, and low cost. Electrical properties of multiple sheets of graphene provide a significant multiplier to earth's weak magnetic field yielding a feasible source of ecologically clean power for electric vehicles. Graphene based EcoCharge systems can be mounted on a vehicles drive shaft and axles putting graphene in motion to mine the earth's magnetic field. Estimates show that EcoCharge can generate 15.1 kW at 60 mph while weighing only 10 oz.
摘要:
The earth's magnetic field has not been mined as a source of energy for electric vehicles. With average field strength of 0.5 Tesla around the world it is easy to understand why it has been overlooked. A disruptive technology is needed to mine the earth's magnetic field for powering electric vehicles. Such a technology, graphene, is now at an early stage of development with excellent properties in the form of high conductivity, low resistivity sheets that are durable, light weight, and low cost. Electrical properties of multiple sheets of graphene provide a significant multiplier to earth's weak magnetic field yielding a feasible source of ecologically clean power for electric vehicles. Graphene based EcoCharge systems can be mounted on a vehicles drive shaft and axles putting graphene in motion to mine the earth's magnetic field. Estimates show that EcoCharge can generate 15.1 kW at 60 mph while weighing only 10 oz.
摘要:
The earth's magnetic field has not been mined as a source of energy. With average field strength of 0.5×10−4 Tesla around the world it is easy to understand why. A disruptive technology is needed to mine the earth's magnetic field. Such a technology, graphene, is now at an early stage of development with excellent properties in the form of high conductivity, low resistivity, durable, light weight, low cost sheets. Multiple sheets of graphene provide a significant multiplier to earth's magnetic field yielding a feasible source of ecologically clean power. Graphene based EcoCharge units can be driven by electric motors putting graphene in motion to mine the earth's magnetic field. Estimates show that for a Solar Impulse 2 like electric plane, eight EcoCharge units weighing 64 lbs generate 60 kW RMS continuously replacing 3,000 lbs of photovoltaic cells generating 50 kW RMS during the day only.
摘要:
The earth's magnetic field has not been mined as a source of energy for electric vehicles. With average field strength of 0.5 Tesla around the world it is easy to understand why it has been overlooked. A disruptive technology is needed to mine the earth's magnetic field for powering electric vehicles. Such a technology, graphene, is now at an early stage of development with excellent properties in the form of high conductivity, low resistivity sheets that are durable, light weight, and low cost. Electrical properties of multiple sheets of graphene provide a significant multiplier to earth's weak magnetic field yielding a feasible source of ecologically clean power for electric vehicles. Graphene based EcoCharge systems can be mounted on a vehicles drive shaft and axles putting graphene in motion to mine the earth's magnetic field. Estimates show that EcoCharge can generate 15.1 kW at 60 mph while weighing only 10 oz.
摘要:
The earth's magnetic field has not been mined as a source of energy for electric vehicles. With average field strength of 0.5×10−4 Tesla around the world it is easy to understand why it has been overlooked. A disruptive technology is needed to mine the earth's magnetic field for powering electric vehicles. Such a technology, graphene, is now at an early stage of development with excellent properties in the form of high conductivity, low resistivity sheets that are durable, light weight, and low cost. Electrical properties of multiple sheets of graphene provide a significant multiplier to earth's weak magnetic field yielding a feasible source of ecologically clean power for electric vehicles. Graphene based EcoCharge systems can be mounted on a vehicles drive shaft and axles putting graphene in motion to mine the earth's magnetic field. Estimates show that EcoCharge can generate 15.1 kW at 60 mph while weighing only 10 oz.
摘要:
A technique for alerting a user of approaching moving objects from the side or rear includes a rear looking radar with audio alerts to the user. Feasibility of the Rear Looking Snow Helmet is shown using the skiing and snowboarding applications where variable frequency (distance related) audio alerts are provided to left and right earphones depending on the location of the approaching skier/snowboarder. The electronics driving the system are mounted in the skier's/snowboarder's helmet while two antenna elements are mounted on the rear of the helmet. A large ON/OFF switch is mounted on the helmet for easy access. We show feasibility of the concept using performance analysis and by proposing an implementation architecture for the skiing and snowboarding applications. We claim the system will meet an acceptable level of performance when parameters are varied and traded off and that the system is technology independent.