摘要:
Systems and methods of optimizing capacity of an optical network, through intentionally reducing margin on one or more wavelengths, include identifying a first wavelength capable of using excess capacity; determining the one or more wavelengths that have extra margin; adjusting at least one of the one or more wavelengths to reduce associated margin to a nominal margin so as to increase supportable capacity of the first wavelength; and increasing capacity of the first wavelength based on the supportable capacity.
摘要:
Systems and methods of increasing the supportable capacity from a first point to a second point in an optical network, include identifying a first optical signal that occupies a first portion of optical spectrum from the first point to the second point; identifying a second optical signal that occupies a second portion of the optical spectrum from the first point to the second point, wherein the second portion is adjacent to the first portion; adjusting the second optical signal to minimize part of or remove all of the second portion that is adjacent to the first optical signal to provide a freed up portion of the second portion; and adjusting the first optical signal to occupy some or all of the freed up portion.
摘要:
A method and system for routing a connection on a communication network. A first bandwidth pool is classified as a long lived bandwidth pool and a second bandwidth pool is classified as a short lived bandwidth pool. The long lived bandwidth pool is used to route connections having a duration that are expected to equal or exceed a predetermined time. The short lived bandwidth pool is used to route connections having a duration that are not expected to exceed the predetermined time. A request to route a connection on the communication network is received. At least one characteristic of the connection is determined and is used to determine whether to route the connection on the long lived bandwidth pool or short lived bandwidth pool.
摘要:
A method of managing a network comprising a plurality of nodes. Each node maintains a respective topology database containing topology information of the network within a local region of the node, the local region encompassing a subset of the plurality of nodes of the network. The nodes of the network implementing a Recursive Path Computation algorithm to compute end-to-end routes through the network.
摘要:
A method, a network element, and a network include determining excess margin relative to margin needed to insure performance at a nominal guaranteed rate associated with a flexible optical modem configured to communicate over an optical link; causing the flexible optical modem to consume most or all of the excess margin, wherein the capacity increased above the nominal guaranteed rate includes excess capacity; and mapping the excess capacity to one or more logical interfaces for use by a management system, management plane, and/or control plane. The logical interfaces can advantageously be used by the management system, management plane, and/or control plane as one of restoration bandwidth or short-lived bandwidth-on-demand (BOD) connections, such as sub-network connections (SNCs) or label switched paths (LSPs).
摘要:
A method of extending the control plane to a network edge for a network having first set of nodes of the network are designated as core nodes, each core node being operable to route subscriber traffic between a pair of neighbour core nodes and a second set of control-plane enabled nodes of the network designated as tail nodes, each tail node connected to a core node and operating only as a source or sink of subscriber traffic. Each core node that is connected to at least one tail node is designated as a host node. The host node is controlled to advertise summary information of its connected tail nodes to other core and tail nodes in the network, thus making it possible to extend control plane function to the tail nodes which can calculate connection routes, set-up/tear-down connections and perform connection failure recovery functions.
摘要:
Systems and methods of optimizing capacity of an optical network include identifying a first wavelength with an associated target capacity; determining that the first wavelength has insufficient capability to operate at the associated target capacity; and adjusting one or more wavelengths to increase capability of the first wavelength such that the first wavelength can operate at the associated target capacity.
摘要:
Systems and methods of increasing the supportable capacity from a first point to a second point in an optical network, include identifying a first optical signal that occupies a first portion of optical spectrum from the first point to the second point; identifying a second optical signal that occupies a second portion of the optical spectrum from the first point to the second point, wherein the second portion is adjacent to the first portion; adjusting the second optical signal to minimize part of or remove all of the second portion that is adjacent to the first optical signal to provide a freed up portion of the second portion; and adjusting the first optical signal to occupy some or all of the freed up portion.
摘要:
Systems and methods of optimizing capacity of an optical network include identifying a first wavelength with an associated target capacity; determining that the first wavelength has insufficient capability to operate at the associated target capacity; and adjusting one or more wavelengths to increase capability of the first wavelength such that the first wavelength can operate at the associated target capacity.
摘要:
The present disclosure provides systems and methods for administrative boundaries in a single domain optical network such as emulation of an External network-network interface (ENNI) using an Internal-Network to Network Interface (INNI). For example, in a single monolithic domain, a network and associated network elements may discover network elements, build topology, compute paths, establish new calls, etc. A user may identify/mark specific links as emulated “ENNI” links with the specific links actually being INNI links. As a call traverses this emulated link, a new call is initiated (much in the same way a new call segment would be created for a call). Signaling proceeds as normal. When the call set-up is fully complete, instead of a single call segment, many call segments exists. Advantageously, this allows use of INNI control plane features while allowing a network operator to future-proof their network by installing call segments at future boundary points.