Abstract:
A variable gain optical amplifier comprises an EDFA for amplifying optical signals at different wavelengths and a pump driver 14 for optically pumping the EDFA to provide optical gain. An input detector 2 is provided for monitoring the power Pin of input signals to the EDFA, and an output detector 3 is provided for monitoring the power Pout of output signals from the EDFA. A gain control arrangement is provided for supplying a drive signal to the pump driver 14 to control the optical gain including a feed forward arrangement 20, 21, 22, 23 for supplying a feed forward signal dependent on the monitored input power Pin, and a feed back arrangement 5, 6, 7, 8, 9, 30 for supplying a feed back signal dependent on the monitored output power Pout. In order to ensure rapid gain control the feed back arrangement comprises an adaptive proportional-integral (PI or PID) controller 30 for controlling the optical gain at a required gain set point in accordance with proportional and integral control coefficients Kp and Ki corresponding to a required gain profile, at least one of which is dynamically variable in dependence on the monitored output power Pout, the output signal from the controller 30 and the feed forward signal being added in an adder 31 to produce the drive signal for the pump driver 14.
Abstract translation:可变增益光放大器包括用于放大不同波长的光信号的EDFA和用于光泵浦EDFA以提供光增益的泵驱动器14。 提供输入检测器2,用于监视到EDFA的输入信号的 SUB>中的功率P',并且提供输出检测器3,用于监视来自于EDFA的输出信号的功率P < EDFA。 提供增益控制装置,用于向泵驱动器14提供驱动信号以控制光学增益,包括前馈装置20,21,22,23,用于提供取决于所监视的输入功率P'的前馈信号 以及反馈装置5,6,7,8,9,30,用于根据所监视的输出功率P OUT提供反馈信号。 为了确保快速增益控制,反馈装置包括一个自适应比例积分(PI或PID)控制器30,用于根据比例和积分控制系数K P来控制所需增益设定点处的光增益。 SUB&gt;和对应于所需增益分布的K i I i,其中的至少一个根据监视的输出功率P OUT输出可动态地变化,来自控制器的输出信号 30,并且前馈信号被添加在加法器31中,以产生用于泵驱动器14的驱动信号。
Abstract:
A method of operating a production optical amplifier comprises determining a training data set of amplified spontaneous emission (ASE) values of a training optical amplifier over a plurality of training operating conditions, determining a production data set of ASE values of the production optical amplifier over a plurality of production operating conditions, the plurality of production operating conditions corresponding to a sub-set of the plurality of training operating conditions, determining an adjusted data set of adjusted ASE values produced by extrapolation from the production data set so that the adjusted data set is provided over a plurality of operating conditions corresponding to the plurality of training operating conditions, determining, for each of a plurality of operating conditions, a dynamic ASE tilt factor from the training data set and the adjusted ASE data set so determined, determining a larger data set of ASE values over a wider set of operating conditions than either the training data set or the production data set from the adjusted ASE dataset and the dynamic ASE tilt factor, and compensating the optical output power of the production optical amplifier in correspondence with the larger ASE data set generated from the production data set and the dynamic ASE tilt factor over the plurality of operating conditions, which is preferably a larger set of operating conditions than that of the training data set or production data set. Advantageously a compensating ASE value can be more quickly and cheaply determined by this method compared to those shown in the prior art.
Abstract:
Fiber-optic communications systems are provided for optical communications networks. Fiber-optic communications links may be provided that use spans of transmission fiber to carry optical data signals on wavelength-division-multiplexing channels at different wavelengths between nodes. An apparatus and method are disclosed to use one optical light source per node to perform OTDR and LCV to satisfy safety concerns and accelerate the verification of the integrity of optical fiber links, before the application of high Raman laser powered light sources to a fiber link. A system using only one receiver per node is also disclosed.
Abstract:
A method of operating a production optical amplifier comprises determining a training data set of amplified spontaneous emission (ASE) values of a training optical amplifier over a plurality of training operating conditions, determining a production data set of ASE values of the production optical amplifier over a plurality of production operating conditions, the plurality of production operating conditions corresponding to a sub-set of the plurality of training operating conditions, determining an adjusted data set of adjusted ASE values produced by extrapolation from the production data set so that the adjusted data set is provided over a plurality of operating conditions corresponding to the plurality of training operating conditions, determining, for each of a plurality of operating conditions, a dynamic ASE tilt factor from the training data set and the adjusted ASE data set so determined, determining a larger data set of ASE values over a wider set of operating conditions than either the training data set or the production data set from the adjusted ASE dataset and the dynamic ASE tilt factor, and compensating the optical output power of the production optical amplifier in correspondence with the larger ASE data set generated from the production data set and the dynamic ASE tilt factor over the plurality of operating conditions, which is preferably a larger set of operating conditions than that of the training data set or production data set. Advantageously a compensating ASE value can be more quickly and cheaply determined by this method compared to those shown in the prior art.
Abstract:
Fiber-optic communications systems are provided for optical communications networks. Fiber-optic communications links may be provided that use spans of transmission fiber to carry optical data signals on wavelength-division-multiplexing channels at different wavelengths between nodes. An apparatus and method are disclosed to use one optical light source per node to perform OTDR and LCV to satisfy safety concerns and accelerate the verification of the integrity of optical fiber links, before the application of high Raman laser powered light sources to a fiber link. A system using only one receiver per node is also disclosed.
Abstract:
A multichannel optical amplifier having an adjustable gain set point is controlled to permit substantially constant gain tilt control during a gain set-point change so that the channel powers are maintained during system modification. To this end the amplifier comprises an erbium doped fibre (EDF) loop and associated pump amplifier for amplifying an optical signal comprising channels of different wavelengths, a variable optical attenuator (VOA) for controlling the gain of the amplifier by applying a loss profile that varies with wavelength so that the different channels are amplified in accordance with a required gain tilt, preferably a zero gain tilt, and a PI controller for applying a gain tilt adaptation profile to compensate for an inherent gain tilt to produce the required gain tilt. Furthermore the PI controller is arranged to change the gain tilt adaptation profile in response to a change in the gain set point to allow for the different gain characteristics of the amplifier at different gain set points.