Abstract:
Example embodiments relate to a manufacturing device of an anti-reflecting structure and a method for manufacturing the anti-reflecting structure. The manufacturing device of an anti-reflecting structure includes a carrier film on which a stamp structure is formed, an unwinding unit which unwinds the carrier film, a substrate support unit which provides a target substrate to the carrier film, a pressing unit which applies pressure to the carrier film so that a resin provided in the stamp structure is provided to the target substrate, and a winding unit which winds the carrier film from which an anti-reflecting pattern is transferred to the target substrate, wherein the pressing unit includes a chamber which stores the target substrate, and a vent hole formed in the chamber, and air within the chamber is discharged through the vent hole to lower the air pressure in the chamber and apply pressure to the carrier film.
Abstract:
An anti-reflective film includes a transparent substrate, and a high hardness coating layer on at least one surface of the transparent substrate, the high hardness coating layer having a hardness of about 4H or higher and a moth-eye pattern.
Abstract:
Disclosed herein are novel electrochromic materials. The electrochromic materials produce various colors and have bistability to achieve red-green-blue full colors. Therefore, the electrochromic materials can be used in a variety of electrochromic devices. Also disclosed herein are electrochromic devices fabricated using the electrochromic materials.
Abstract:
Provided is a method for prevention or treatment of a cancer, comprising co-administering (a) an FGFR inhibitor and (b) an anti-c-Met antibody or antigen-binding fragment thereof to a subject in need thereof, wherein the anti-c-Met antibody or the antigen-binding fragment thereof specifically binds to an epitope comprising 5 or more contiguous amino acids within the SEMA domain of c-Met protein.
Abstract:
Disclosed therein is a rotor for a motor. The rotor includes: a rotor core including an annular ring having a shaft hole formed at a central portion thereof, a plurality of yokes formed around the annular ring, and magnet insertion holes formed between the neighboring yokes; magnets respectively inserted into the magnet insertion holes; and a pair of rotor covers each having a ring plate, which has a shaft insertion hole formed at a central portion thereof, and a plurality of stoppers protrudingly formed around the ring plate. A pair of the rotor covers are joined to an upper portion and a lower portion of the rotor core in such a fashion that the stoppers are respectively located at side portions of the magnet insertion holes.
Abstract:
A stator for a compressor motor that has a structure in which the ends of insulation films inserted into slots of a stator core are supportedly locked to locking protrusions formed on upper and lower insulators for insulating the upper and lower sides of the stator core, thereby allowing the insulation films to be securely supported and providing easy assembling process for the insulation film and the upper and lower insulators.
Abstract:
Disclosed herein are novel electrochromic materials. The electrochromic materials produce various colors and have bistability to achieve red-green-blue full colors. Therefore, the electrochromic materials can be used in a variety of electrochromic devices. Also disclosed herein are electrochromic devices fabricated using the electrochromic materials.
Abstract:
Disclosed herein are novel electrochromic materials. The electrochromic materials are viologens into which an imidazole derivative is asymmetrically introduced. The electrochromic materials can be used in a variety of electrochromic displays, including electrochromic windows and smart windows. Also disclosed herein are electrochromic devices that use the electrochromic materials.
Abstract:
The present invention relates to an axial motor, and more specifically, to an axial motor which has a simple structure and is easily assembled by inserting and holding core teeth in core teeth insertion holes circularly arranged on a yoke. The axial motor according to the present invention includes: a stator having core teeth which are insulated by insulators, arranged in a ring-shaped pattern, and have a coil wound thereon; and a rotor having magnets which are arranged in a ring-shaped pattern to face the ends of the core teeth in an axial direction and are supported by the rotor axis at the center of the rotor to rotate relatively with respect to the stator. The stator comprises: a plate yoke with a donut shape having an open center, wherein the core teeth insertion holes are arranged along the circumference of the plate yoke; core teeth, each of the core teeth having one end formed with a core pole and the other end inserted into each of the core teeth insertion holes, thereby being vertically fixed to the yoke; core teeth insulators which are made of insulation materials and wrapped around the exterior of the core teeth in such a manner that the core poles and the other ends of the core teeth are not covered; and a coil wound around the core teeth which are wrapped in the core teeth insulators.
Abstract:
Disclosed herein a pharmaceutical composition, comprising obovatol as an active ingredient, for the prevention and treatment of neurodegenerative diseases. Having superior inhibitory activity against the production of neurotoxic nitric oxides, the obovatol isolated and purified from Magnoliaceae can be used as active ingredient for a pharmaceutical composition or a neuroprotective agent for the prevention and treatment of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis.