Abstract:
Example embodiments relate to a manufacturing device of an anti-reflecting structure and a method for manufacturing the anti-reflecting structure. The manufacturing device of an anti-reflecting structure includes a carrier film on which a stamp structure is formed, an unwinding unit which unwinds the carrier film, a substrate support unit which provides a target substrate to the carrier film, a pressing unit which applies pressure to the carrier film so that a resin provided in the stamp structure is provided to the target substrate, and a winding unit which winds the carrier film from which an anti-reflecting pattern is transferred to the target substrate, wherein the pressing unit includes a chamber which stores the target substrate, and a vent hole formed in the chamber, and air within the chamber is discharged through the vent hole to lower the air pressure in the chamber and apply pressure to the carrier film.
Abstract:
An anti-reflective film includes a transparent substrate, and a high hardness coating layer on at least one surface of the transparent substrate, the high hardness coating layer having a hardness of about 4H or higher and a moth-eye pattern.
Abstract:
A safe operation apparatus for a moving object includes: a distraction detection unit for detecting distraction information of a user operating a moving object; a controller for collecting the distraction information from the distraction detection unit, calculating a user's distraction state value, and controlling the moving object to be automatically operated or warning of the distraction state based on the distraction state value; and an automatic operation unit for automatically operating the moving object under the control of the controller. The apparatus further includes a communication unit for transmitting the user's distraction state to a remote control center or an adjacent different moving object under the control of the controller.
Abstract:
Various embodiments of the present invention are generally directed to an apparatus with embedded (bottom side) control lines for vertically stacked semiconductor elements, and a method for forming the same. In accordance with various embodiments, a first semiconductor wafer is provided with a first facing surface on which a first conductive layer is formed. The first semiconductor wafer is attached to a second semiconductor wafer to form a multi-wafer structure, the second semiconductor wafer having a second facing surface on which a second conductive wafer is formed. The first conductive layer is contactingly bonded to the second conductive layer to form an embedded combined conductive layer within said structure. Portions of the combined conductive layer are removed to form a plurality of spaced apart control lines that extend in a selected length or width dimension through said structure.
Abstract:
A method includes providing a semiconductor wafer having a plurality of pillar structures extending orthogonally from the semiconductor wafer. Each pillar structure forms a vertical pillar transistor having a top surface and a side surface orthogonal to the top surface. Then a hardening species is implanted into the vertical pillar transistor top surface. Then the vertical pillar transistor side surface is oxidized to form a side surface oxide layer. The side surface oxide layer is removed to form vertical pillar transistor having rounded side surfaces.
Abstract:
A semiconductor device for accessing non-volatile memory cell is provided. In some embodiments, the semiconductor device has a vertical stack of semiconductor layers including a source, a drain, and a well. An application of a drain-source bias voltage to the semiconductor device generates a punchthrough mechanism across the well to initiate a flow of current between the source and the drain.
Abstract:
In a method for exchanging security situation information between mobile terminals, each of which is connected to a wired/wireless network, security profiles are exchanged between two mobile terminals between which a connection is to be established. The security profiles include security situation information of the mobile terminals, and, each mobile terminal performs a validity check on the received security profile to determine whether security situation of the opponent mobile terminal is trustworthy or not. The connection is established only when the security situations of both mobile terminals are trustworthy.
Abstract:
An access pointer for interconnecting a power line communication (PLC) network of a home network and a wireless network and a method therefor are provided. When data is received from the PLC network through media access control of a data link layer, data on upper layers above a network layer in the received data is converted into a format suitable to a wireless network layer. The converted data is transmitted to the wireless network through the media access control of the data link layer. Accordingly, the PLC network and the wireless network are easily interconnected.
Abstract:
Disclosed is a capacitive proximity sensor in dual implementation. The sensor comprises an upper electrode layer having a plurality of electrodes disposed in line with each other, a lower electrode layer having a plurality of electrodes disposed in line with each other and an insulating layer disposed between the upper electrode layer and the lower electrode layer. The sensor detects the proximity of approaching objects by the capacitance change between the electrodes disposed in the upper electrode layer, and detects the contact of any objects by the capacitance change between the electrodes of the upper electrode layer and the electrodes of the lower electrode layer.
Abstract:
An apparatus for vessel traffic management mounted in a vessel creates vessel sailing information including a current location and an identifier of the vessel in accordance with a navigation plan to a destination of the vessel; calculates an estimated time for arriving at the destination based on a distance between the current location and the destination and a sailing speed; and calculates an estimated entry time of entering a target area within the destination based on a distance between the current location and the destination and the sailing speed. The vessel sailing information, the estimated arrival time, and the estimated entry time are transmitted to a local control center, and the sailing of the vessel is controlled using a vessel traffic condition at the target area, provided from the local control center.