Abstract:
Provided are photomasks, methods of fabricating the photomasks, and methods of fabricating a semiconductor device by using the photomasks, in which a critical dimension (CD) of a pattern of a specific region of the photomask is corrected to improve the distribution of CDs of the pattern formed on a wafer. The photomasks may include a substrate and a light-blocking pattern formed on the substrate that includes an absorber layer and an anti-reflection coating (ARC) layer. The light-blocking pattern may include at least one of a first corrected area in which a top surface of the absorber layer is exposed, and a second corrected area in which a correction layer is formed on the ARC layer.
Abstract:
A clothes treatment apparatus (100) and a control method thereof are disclosed. The clothes treatment apparatus (100) includes a cabinet (1) closed by a door (3) and an accommodation space (2) provided in the cabinet (1), consisting for example of a first accommodation space (21) and a second accommodation space (23), wherein a mechanism chamber (25) is provided. The clothes treatment apparatus (100) includes a fixed nozzle device (4) comprising heated air supply holes (41), steam supply holes (43) and detergent supply holes (45) and a moving nozzle device (5) which reciprocates along a guide part (51). Clothes are held by a hanger (7) in the accommodation space (2).
Abstract:
Three-dimensional (3D) semiconductor memory devices capable of improving reliability may be provided. For example, a three dimensional (3D) memory device, in which a plurality of memory cell strings are vertically arranged, may include a substrate, a stack structure of alternating a plurality of interlayer dielectric (ILD) layers and a plurality of gate electrodes, at least one of the ILD layers including pores, a vertical structure penetrating the stack structure and electrically connected to the substrate, and a data storage layer between the stack structure and the vertical structure.
Abstract:
Provided are photomasks, methods of fabricating the photomasks, and methods of fabricating a semiconductor device by using the photomasks, in which a critical dimension (CD) of a pattern of a specific region of the photomask is corrected to improve the distribution of CDs of the pattern formed on a wafer. The photomasks may include a substrate and a light-blocking pattern formed on the substrate that includes an absorber layer and an anti-reflection coating (ARC) layer. The light-blocking pattern may include at least one of a first corrected area in which a top surface of the absorber layer is exposed, and a second corrected area in which a correction layer is formed on the ARC layer.
Abstract:
The present invention relates to a computer providing a motion picture mode including at least one storage unit configured to store system state information when the computer enters the motion picture mode and to store motion picture data, the storage unit including a random access memory (RAM) and a hard disk drive (HDD), a graphic processing unit configured to process image data and to display processed data on a screen, an audio outputting unit configured to process and output audio signals, and a control unit configured to control modules included in the computer and a system mode of the computer. The control unit is configured to determine whether conditions for entering the motion picture mode have been satisfied, and to change the system mode to the motion picture mode if the conditions for the motion picture mode are satisfied.
Abstract:
A semiconductor device includes: a first driving voltage generation unit configured to generate a first driving voltage; a fuse unit coupled between an output node for receiving the first driving voltage and a fuse state sensing node; a driving unit configured to drive the fuse state sensing node with a second driving voltage in response to a control signal; a voltage level control unit configured to generate a voltage level control signal in response to a fuse state sensing signal that corresponds to a voltage level of the fuse state sensing node; and a second driving voltage generation unit configured to control and output a voltage level of the second driving voltage in response to the voltage level control signal. The semiconductor device repeatedly performs a rupture operation by monitoring a fuse state sensing signal.
Abstract:
A semiconductor memory device includes a memory array configured to include memory cells for storing input data and Code Address Memory (CAM) cells for storing setting data used to set an operation condition; an operation circuit configured to perform a CAM read operation by supplying a read voltage to the CAM cells, perform a test operation for detecting unstable CAM cells in each of which a difference between a threshold voltage and the read voltage is smaller than a permitted limit, from among the CAM cells, and perform an erase operation or a program operation for the unstable CAM cells; and a controller configured to control the operation circuit so that the program operation for storing the setting data in the unstable CAM cells is performed if the number of unstable CAM cells detected in the test operation is greater than a permitted value.
Abstract:
A semiconductor device includes: a first driving voltage generation unit configured to generate a first driving voltage; a fuse unit coupled between an output node for receiving the first driving voltage and a fuse state sensing node; a driving unit configured to drive the fuse state sensing node with a second driving voltage in response to a control signal; a voltage level control unit configured to generate a voltage level control signal in response to a fuse state sensing signal that corresponds to a voltage level of the fuse state sensing node; and a second driving voltage generation unit configured to control and output a voltage level of the second driving voltage in response to the voltage level control signal. The semiconductor device repeatedly performs a rupture operation by monitoring a fuse state sensing signal.