Abstract:
This invention relates to inductive inertial sensors employing a magnetic drive and/or sense architecture. In embodiments, translational gyroscopes utilize a conductive coil made to vibrate in a first dimension as a function of a time varying current driven through the coil in the presence of a magnetic field. Sense coils register an inductance that varies as a function of an angular velocity in a second dimension. In embodiments, the vibrating coil causes first and second mutual inductances in the sense coils to deviate from each other as a function of the angular velocity. In embodiments, self-inductances associated with a pair of meandering coils vary as a function of an angular velocity in a second dimension. In embodiments, package build-up layers are utilized to fabricate the inductive inertial sensors, enabling package-level integrated inertial sensing advantageous in small form factor computing platforms, such as mobile devices.
Abstract:
A method of configuring a stack includes: connecting stacking ports of a plurality of stackable devices using one or more stacking links; connecting a user console to a first one of the stackable devices; transmitting a stack setup command from the user console to the first stackable device; and establishing a stack in response to the stack setup command. The stack is established by initiating a discovery process with the first stackable device in response to the stack setup command, wherein the first stackable device requests and receives identifying information from the stackable devices over the stacking links during the discovery process. The topology of the stackable devices is displayed with the user console in response to the identifying information. The stackable devices are authenticated during the discovery process such that the stack setup is secure. The first stackable device becomes the active controller of the stack by default.
Abstract:
Nanowire-based mechanical switching devices are described. For example, a nanowire relay includes a nanowire disposed in a void disposed above a substrate. The nanowire has an anchored portion and a suspended portion. A first gate electrode is disposed adjacent the void, and is spaced apart from the nanowire. A first conductive region is disposed adjacent the first gate electrode and adjacent the void, and is spaced apart from the nanowire.
Abstract:
This invention relates to inductive inertial sensors employing a magnetic drive and/or sense architecture. In embodiments, translational gyroscopes utilize a conductive coil made to vibrate in a first dimension as a function of a time varying current driven through the coil in the presence of a magnetic field. Sense coils register an inductance that varies as a function of an angular velocity in a second dimension. In embodiments, the vibrating coil causes first and second mutual inductances in the sense coils to deviate from each other as a function of the angular velocity. In embodiments, self-inductances associated with a pair of meandering coils vary as a function of an angular velocity in a second dimension. In embodiments, package build-up layers are utilized to fabricate the inductive inertial sensors, enabling package-level integrated inertial sensing advantageous in small form factor computing platforms, such as mobile devices.
Abstract:
The present invention relates to methods that can be used in a wireless communication system, and systems adapted to use such methods. In a preferred form the methods are useful in channel estimation in a wireless communication system using orthogonal frequency division multiplexing (OFDM). The system is provided with a control block to optimize channel estimation.
Abstract:
An isosorbide derivative of Formula (I) is provided. In Formula (I), Z is —CH2—CH2—, —CH═CH—, —C≡C—, —CH2—O—, —CH2—S—, —CH═N—O—, —CO—O—, —CO—S—, single bond, -ph-, —CO—O-ph- or —CO—O-ph-CO—O—, and ph represents benzene, R1 and R2 are, independently, C1-25 alkyl, —CN, —NCS, —CX3 or —OCX3, and X represents halogen, and m and n are, independently, 0, 1 or 2. The invention also provides a liquid crystal display including the isosorbide derivative.
Abstract:
An isosorbide derivative of Formula (I) is provided. In Formula (I), Z is —CH2—CH2—, —CH═CH—, —CH2—O—, —CH2—S—, —CH═N—O—, —CO—O—, —CO—S—, single bond, -ph-, —CO—O-ph- or —CO—O-ph-CO—O—, and ph represents benzene, R1 and R2 are, independently, C1-25 alkyl, —CN, —NCS, —CX3 or —OCX3, and X represents halogen, and m and n are, independently, 0, 1 or 2. The invention also provides a liquid crystal display including the isosorbide derivative.
Abstract:
The present invention discloses an improved probe structure, which is installed in the body of an infrared clinical thermometer and comprises a plastic hollow casing having an opening; a curved block annularly arranged inside the opening; a hollow sleeve arranged inside the casing and along the perimeter of the opening; a temperature sensor arranged inside sleeve and below the curved block; a support element arranged inside the sleeve and supporting the temperature sensor; and a thermal insulation ring encircling the temperature sensor and pressing against the inner wall of the sleeve. The thermal insulation ring has an outer diameter larger than a width of the temperature sensor, and an air gap is thus formed between the temperature sensor and the inner wall of the sleeve; the top of the thermal insulation ring has an altitude higher than the top of the temperature sensor, and another air gap is thus formed between the temperature sensor and the curved block. Thereby is effectively retarded heat conduction from the external to the temperature sensor.
Abstract:
The present invention discloses a probe cover for an ear thermometer, which comprises: a film cover and a base. The film cover has a cover window able to contact the probe window at the front end of the ear thermometer, a hollow cone able to contact the sidewall of the probe and a strengthened element able to contact the cover window and the hollow cone. The thickness of the cover window is same as the thickness of the strengthened element and greater than the thickness of the hollow cone. Thereby, the present invention can prevent the variation of infrared transmittance caused by the misarrangement and non-uniform thickness of the probe cover film disposed at the front of the probe window.