Abstract:
A cooling shield is to be made available, in particular within the pressure container, with conical regions for the exit of gas or slag, in a gasification reactor (1) for producing crude gas containing CO or H2, having a pressure container (2) and a reaction chamber (4) formed by a membrane wall (3) of cooling pipes, wherein an annular space is formed between the inner wall of the pressure container (2) and the membrane wall (3), wherein elements such as burners (17) or the like are provided, which elements horizontally pass through the pressure container wall in the membrane wall substantially on the same plane (18), wherein the suspension or connection between the cooling shield and pressure container (load removal) is optimized, while avoiding difference expansions.This is achieved in that, for removal of the load on the membrane wall (3), direct or indirect support takes place at the cooling inlet lines (5) or mixture outlet lines (14).
Abstract:
With a device for influencing the flow, particularly in a horizontal connecting pipe (1) between a coal gasification reactor and a gas cooler/purifier, a solution is supposed to be created, whose task consists in being able to reduce or shut off the gas stream of a hot synthesis gas, if necessary, without being exposed to the great stresses caused by the corrosiveness and the high temperatures, while avoiding complicated valves or regulation devices.This is achieved by means of a Venturi constriction in the flow path of the gas in the pipe (1), as well as a flow cone (4a) positioned on a push rod (4) that is disposed centrally, whereby a connecting rod system (4b) that is guided to the outside is provided to move the push rod (4), whereby the connecting rod system (4b) that moves the push rod (4) is formed by a connecting rod arm guided in a dummy connector and a connecting rod arm guided out of the dummy connector (8) by way of a packed gland (6).
Abstract:
A cooling shield is to be made available, in particular within the pressure container, with conical regions for the exit of gas or slag, in a gasification reactor (1) for producing crude gas containing CO or H2, having a pressure container (2) and a reaction chamber (4) formed by a membrane wall (3) of cooling pipes, wherein an annular space is formed between the inner wall of the pressure container (2) and the membrane wall (3), wherein elements such as burners (17) or the like are provided, which elements horizontally pass through the pressure container wall in the membrane wall substantially on the same plane (18), wherein the suspension or connection between the cooling shield and pressure container (load removal) is optimized, while avoiding difference expansions.This is achieved in that, for removal of the load on the membrane wall (3), direct or indirect support takes place at the cooling inlet lines (5) or mixture outlet lines (14).
Abstract:
With a system for synthesis gas production, having a reactor as well as a gas cooler/purifier connected with it in terms of flow, a solution is supposed to be created, with which the most compact possible connection between reactor, on the one hand, and the gas cooler or purifier, on the other hand, is made possible, whereby heat expansions that occur due to different temperatures are absorbed. This is accomplished in that the connection between reactor (1) and gas cooler/purifier (7) is formed by a horizontal connection piece (5) having a throttle element (6) configured as a Venturi element.
Abstract:
With a system for synthesis gas production, having a reactor as well as a gas cooler/purifier connected with it in terms of flow, a solution is supposed to be created, with which the most compact possible connection between reactor, on the one hand, and the gas cooler or purifier, on the other hand, is made possible, whereby heat expansions that occur due to different temperatures are absorbed. This is accomplished in that the connection between reactor (1) and gas cooler/purifier (7) is formed by a horizontal connection piece (5) having a throttle element (6) configured as a Venturi element.
Abstract:
It is supposed to be possible to achieve an essentially uniform water film protecting the corresponding metal panels, in a gasification reactor for producing crude gas containing CO or H2, by gasification of ash-containing fuel with oxygen-containing gas, at temperatures above the melting temperature of the ash, wherein a reaction chamber formed by a membrane wall through which cooling medium flows, a transition area as well as a quench chamber with a slag collection container that follows in the direction of gravity are provided within a pressure container.This is achieved in that, in addition to a device (14, 15) forming a water film (16) in the quench chamber (11), at least a part of the cylinder forming the quench chamber wall (17) is designed with a double wall and with a coolant overflow (21) for additionally wetting (18) the inner surface of the quench chamber wall (17), and a tangential coolant supply (20) in the bottom area of the double walled cylinder (19) which is closed at the bottom.
Abstract:
With the help of a method and device for nozzle-jetting oxygen into a synthesis reactor, e.g. for oxy-dehydration, with largely axial flow of the gas mixture through a catalyst bed, it is intended to vastly improve the mixing-in and mixing-through of oxygen above the catalyst especially for oxy-dehydration process. This is achieved by feeding the oxygen to a ring distributor system arranged above the catalyst bed in pure form, as air or mixed with inert gas or water vapour and jetting the oxygen onto the catalyst surface through several exit openings in the ring distributor at an inclined angle deviating from the vertical.
Abstract:
With a device for influencing the flow, particularly in a horizontal connecting pipe (1) between a coal gasification reactor and a gas cooler/purifier, a solution is supposed to be created, whose task consists in being able to reduce or shut off the gas stream of a hot synthesis gas, if necessary, without being exposed to the great stresses caused by the corrosiveness and the high temperatures, while avoiding complicated valves or regulation devices.This is achieved by means of a Venturi constriction in the flow path of the gas in the pipe (1), as well as a flow cone (4a) positioned on a push rod (4) that is disposed centrally, whereby a connecting rod system (4b) that is guided to the outside is provided to move the push rod (4), whereby the connecting rod system (4b) that moves the push rod (4) is formed by a connecting rod arm guided in a dummy connector and a connecting rod arm guided out of the dummy connector (8) by way of a packed gland (6).
Abstract:
In the case of a gasification reactor for the production of crude gas, containing CO or H2, by gasification of ash-containing fuel with oxygen-containing gas, at temperatures above the melting temperature of the ash, wherein a reaction chamber formed by a membrane wall through which coolant flows, within a pressure container, subsequently a transition region and a quench chamber are provided, with a slag/water bath following in the direction of gravity, a solution is to be created, with which the slag container, in particular, is given an economically advantageous configuration, while simultaneously multiplying the method of functioning.This is achieved in that a funnel-shaped slag collection container (12) is provided in the slag/water bath (13), which container is equipped, in the inflow direction of the slag (arrow 18), with a second funnel-shaped insert (15) as a precipitation cone, the funnel wall of which forms a circumferential ring gap (17) to the slag collection container (12), and the free border edge (16) of which is positioned above the free border edge (14) of the slag collection container (12).
Abstract:
With the help of a method and device for nozzle-jetting oxygen into a synthesis reactor, e.g. for oxy-dehydration, with largely axial flow of the gas mixture through a catalyst bed, it is intended to vastly improve the mixing-in and mixing-through of oxygen above the catalyst especially for oxy-dehydration process.This is achieved by feeding the oxygen to a ring distributor system arranged above the catalyst bed in pure form, as air or mixed with inert gas or water vapor and jetting the oxygen onto the catalyst surface through several exit openings in the ring distributor at an inclined angle deviating from the vertical.