Abstract:
A process and device for the gasification of liquid or fine-grain solid fuel materials in a reactor is described. Synthesis gas is generated in a first reaction chamber arranged in the upper part of the reactor; feedstock is fed to the upper part. Liquid slag precipitates on its lateral walls. The lower side has a hole with a slag drop-off edge; generated synthesis gas can be withdrawn in downward direction and the liquid slag can drop off the edge. A second chamber delimited by a water film is located under the opening. A third chamber adjacent to the bottom of the second is fed with water. A water bath is adjacent the bottom of the third chamber. The synthesis gas is withdrawn from the pressure vessel in an area at the side or below the third chamber, but located above the water bath.
Abstract:
A pressure filtration system for cleaning residual quenching water of a gasifying device that gasifies carbon-containing fuels under elevated pressure is provided. The soot water from the quencher is passed to a filter system, which has pressure filter chambers operating alternately in filtering mode under gasifying pressure or in cleaning mode. The filtrate from these chambers is passed to a quenching water reservoir, from which the quencher is fed with quenching water. Only small temperature and pressure losses with respect to the residual quenching water leaving, and only a small additional amount of energy has to be expended to overcome the remaining pressure difference to bring the filtrate that is to be returned back to the gasifying pressure. The residual quenching water is cleaned substantially under gasifying pressure in a pressure filter, avoids flash evaporation of the residual quenching water into the vacuum area, with vapour cooling and a subsequent increase in pressure and reheating.
Abstract:
A process for the gasification of wet biomass. The process comprises heating wet biomass at a pressure in the range of from 22.1 MPa to 35 MPa. The wet biomass is heated from a temperature of at most T1 to a temperature of at least T2 by heat exchange with a first heating fluid. The gasification product is further heated. The further heated gasification product is used as the first heating fluid, upon which the further heated gasification product is cooled down from a temperature of at least T3 to a temperature of at most T4. The temperatures T1, T2, T3 and T4 can be calculated by using certain mathematical formulae. Also claimed: a reaction apparatus for the gasification of wet biomass.
Abstract:
A gasification apparatus heats and pressurizes a gasification feedstock to bring the gasification feedstock into a supercritical state, and performs decomposition-treatment on the gasification feedstock to obtain fuel gas. The gasification apparatus includes a heat exchanger, a gas-liquid separator, and a turbine. The heat exchanger introduces the gasification feedstock into a low-temperature-side flow channel and introduces treated fluid in a supercritical state into a high-temperature-side flow channel, so that heat exchange is performed between the gasification feedstock and the treated fluid. The gas-liquid separator extracts, from the high-temperature-side flow channel, the treated fluid that has been in a subcritical state due to heat exchange, performs gas-liquid separation on the treated fluid, and returns a separated liquid to the high-temperature-side flow channel. The turbine is powered by fuel gas separated by the gas-liquid separator.
Abstract:
Provided is a gas cooler for cooling a produced gas on a side from which the produced gas exits, the produced gas being produced by partially oxidizing and gasifying a carbon-containing fuel in a gasification furnace inside a pressure vessel. A distance (SL) between tubes of a tube bundle of a heat exchanger provided inside the gas cooler is set such that the tubes are in contact with each other or adjacent to each other in a gas-flow direction of the produced gas. Since the tubes are in contact with each other or adjacent to each other, a particle flowing with the gas flow is only deposited as a deposited particle in a concave portion between the tubes, whereby the decrease in heat exchange efficiency caused by particle deposition can be suppressed.
Abstract:
Systems and methods for reducing or eliminating corrosion of components of a reactor system, including a supercritical water gasification system, are described. Corrosion protection layers may be configured to provide a physical barrier between component surfaces and subcritical fluid present in one or more subcritical zones during operation of the reactor system. The corrosion protection layers may include glass and silicon carbide, and may be positioned within the one or more subcritical zones to prevent the subcritical fluid from contacting component surfaces susceptible to corrosion from corrosive ions present in the subcritical fluid.
Abstract:
Technologies are presented for reducing corrosion M supercritical water gasification through seeded sacrificial metal particles. The metal panicles may be seeded into one or more material input streams through high pressure injection. Once distributed in the SCWG reactor, the metal particles may corrode preferentially to the metal SCWG reactor walls and convert into metal oxides that precipitate out above the supercritical point of water. The precipitated metal oxides may then be collected downstream of the SCWG reactor to be reprocessed back into seed metal at a smelter. The seeded metal particles may complete a process material cycle with limited net additional waste.
Abstract:
The present invention is a vitrification and gasification system that operates at elevated pressures. The system includes a processing chamber having numerous penetrations, and seals for effectively sealing the penetrations to the processing chamber.
Abstract:
A gasification reactor including a gasifier having a tubular gastight wall with a discharge channel or dip tube at its lower end leading into a lower slag collection bath. The gastight wall and the slag collection bath are arranged within a pressure vessel. An annular space between the pressure vessel and the gasifier with the discharge channel is separated in a high pressure top section and a low pressure lower section by a sealing arrangement having a damper. The damper can for instance be a hydraulic lock, or a lower seal at a distance below an upper seal.
Abstract:
A system includes a gasifier, which includes a reaction chamber configured to convert a feedstock into a synthetic gas, a quench chamber configured to cool the synthetic gas, a quench ring configured to provide a water flow to the quench chamber, and a quench ring protection system configured to protect the quench ring from the synthetic gas or a molten slag. The quench ring protection system includes a protective barrier disposed within an inner circumferential surface of the quench ring. The protective barrier substantially overlaps the inner circumferential surface in an axial direction along an axis of the quench ring.