Abstract:
Apparatus and methods for electroplating metal onto substrates are disclosed. The electroplating apparatus comprise an electroplating cell and at least one oxidization device. The electroplating cell comprises a cathode chamber and an anode chamber separated by a porous barrier that allows metal cations to pass through but prevents organic particles from crossing. The oxidation device (ODD) is configured to oxidize cations of the metal to be electroplated onto the substrate, which cations are present in the anolyte during electroplating. In some embodiments, the ODD is implemented as a carbon anode that removes Cu(I) from the anolyte electrochemically. In other embodiments, the ODD is implemented as an oxygenation device (OGD) or an impressed current cathodic protection anode (ICCP anode), both of which increase oxygen concentration in anolyte solutions. Methods for efficient electroplating are also disclosed.
Abstract:
Photoconductive optoelectronic devices, such as photodetectors and photovoltaics, are provided. The devices are sensitized to a particular wavelength (or range of wavelengths) of electromagnetic radiation such that the devices provide increased performance efficiency (e.g., external quantum efficiency) at the wavelength. The devices include a photoconductive semiconductor layer spanning an electrode gap between two electrodes to provide a photoconductive electrical conduit. Abutting the semiconductor layer is a plurality of plasmonic nanoparticles. The improved efficiency of the devices results from wavelength-dependent plasmonic enhancement of device photosensitivity by the plasmonic nanoparticles.
Abstract:
Photoconductive optoelectronic devices, such as photodetectors and photovoltaics, are provided. The devices are sensitized to a particular wavelength (or range of wavelengths) of electromagnetic radiation such that the devices provide increased performance efficiency (e.g., external quantum efficiency) at the wavelength. The devices include a photoconductive semiconductor layer spanning an electrode gap between two electrodes to provide a photoconductive electrical conduit. Abutting the semiconductor layer is a plurality of plasmonic nanoparticles. The improved efficiency of the devices results from wavelength-dependent plasmonic enhancement of device photosensitivity by the plasmonic nanoparticles.