摘要:
Disclosed are methods of depositing and annealing a copper seed layer. A copper seed layer may be deposited on a ruthenium layer disposed on a surface of a wafer and on features in the wafer. The thickness of the ruthenium layer may be about 40 Angstroms or less. The copper seed layer may be annealed in a reducing atmosphere having an oxygen concentration of about 2 parts per million or less. Annealing the copper seed layer in a low-oxygen atmosphere may improve the properties of the copper seed layer.
摘要:
A substantially uniform layer of a metal is electroplated onto a work piece having a seed layer thereon. This is accomplished by employing a “high resistance ionic current source,” which solves the terminal problem by placing a highly resistive membrane (e.g., a microporous ceramic or fretted glass element) in close proximity to the wafer, thereby swamping the system's resistance. The membrane thereby approximates a constant current source. By keeping the wafer close to the membrane surface, the ionic resistance from the top of the membrane to the surface is much less than the ionic path resistance to the wafer edge, substantially compensating for the sheet resistance in the thin metal film and directing additional current over the center and middle of the wafer.
摘要:
Methods, apparatus, and systems for depositing copper and other metals are provided. In some implementations, a wafer substrate is provided to an apparatus. The wafer substrate has a surface with field regions and a feature. A copper layer is plated onto the surface of the wafer substrate. The copper layer is annealed to redistribute copper from regions of the wafer substrate to the feature. Implementations of the disclosed methods, apparatus, and systems allow for void-free bottom-up fill of features in a wafer substrate.
摘要:
Apparatus and methods for electroplating metal onto substrates are disclosed. The electroplating apparatus comprise an electroplating cell and at least one oxidization device. The electroplating cell comprises a cathode chamber and an anode chamber separated by a porous barrier that allows metal cations to pass through but prevents organic particles from crossing. The oxidation device (ODD) is configured to oxidize cations of the metal to be electroplated onto the substrate, which cations are present in the anolyte during electroplating. In some embodiments, the ODD is implemented as a carbon anode that removes Cu(I) from the anolyte electrochemically. In other embodiments, the ODD is implemented as an oxygenation device (OGD) or an impressed current cathodic protection anode (ICCP anode), both of which increase oxygen concentration in anolyte solutions. Methods for efficient electroplating are also disclosed.
摘要:
Methods of forming a capping layer on conductive lines in a semiconductor device may be characterized by the following operations: (a) providing a semiconductor substrate comprising a dielectric layer having (i) exposed conductive lines (e.g., copper lines) disposed therein, and (ii) an exposed barrier layer disposed thereon; and (b) depositing a capping layer material on at least the exposed conductive lines of the semiconductor substrate. In certain embodiments, the method may also involve removing at least a portion of a conductive layer (e.g., overburden) disposed over the barrier layer and conductive lines to expose the barrier layer.
摘要:
A semiconductor electroplating process deposits copper into the through silicon via hole to completely fill the through silicon via in a substantially void free is disclosed. The through silicon via may be more than about 3 micrometers in diameter and more that about 20 micrometers deep. High copper concentration and low acidity electroplating solution is used for deposition copper into the through silicon vias.
摘要:
Sonic radiation is applied to a wafer portion of the planar surface of a rotating, tilted wafer as it is being immersed into a liquid treatment bath. The portion includes the leading outer edge region of the wafer. The area of the wafer portion is significantly less than the total surface area of the planar wafer surface. Power density is minimized. As a result, bubbles are removed from the wafer surface and cavitation in the liquid bath is avoided. In some embodiments, the liquid bath is de-gassed to inhibit bubble formation.
摘要:
An apparatus for engaging a work piece during plating facilitates electrolyte flow during a plating operation. The apparatus helps to control the plating solution fluid dynamics and electric field shape to keep the wafer's local plating environment uniform and bubble free. The apparatus holding the work piece in a manner that facilitates electrolyte circulation patterns in which the electrolyte flows from the center of the work piece plating surface, outward toward the edge of the edge of the work piece. The apparatus holds the work piece near the work piece edges and provides a flow path for electrolyte to flow outward away from the edges of the work piece plating surface. That flow path has a “snorkel” shape in which the outlet is higher than the inlet. In addition, the flow path may have a slot shape that spans much or all of the circumference of holding apparatus. It may be made from a material that resists deformation and corrosion such as certain ceramics.
摘要:
Electroplating methods using an electroplating bath containing metal ions and a suppressor additive, an accelerator additive, and a leveler additive, together with controlling the current density applied to a substrate, avoid defects in plated films on substrates having features with a range of aspect ratios, while providing good filling and thickness distribution. The methods include, in succession, applying DC cathodic current densities optimized to form a conformal thin film on a seed layer, to provide bottom-up filling, preferentially on features having the largest aspect ratios, and to provide conformal plating of all features and adjacent field regions. Including a leveling agent in the electroplating bath produces films with better quality after subsequent processing.
摘要:
An electroplating apparatus prevents anode-mediated degradation of electrolyte additives by creating a mechanism for maintaining separate anolyte and catholyte and preventing mixing thereof within a plating chamber. The separation is accomplished by interposing a porous chemical transport barrier between the anode and cathode. The transport barrier limits the chemical transport (via diffusion and/or convection) of all species but allows migration of ionic species (and hence passage of current) during application of sufficiently large electric fields within electrolyte.