Abstract:
An exemplary method includes generating, by an external control device selectively and communicatively coupled to an implantable stimulator, a calibration table indicating transmit power levels required to achieve a plurality of distinct combinations of compliance voltages and maximum stimulation current levels by the implantable stimulator, determining, by the external control device, a maximum stimulation current level to be delivered by the implantable stimulator via one or more electrodes to one or more stimulation sites within a patient during a stimulation frame, determining, by the external control device, an optimal compliance voltage that allows the implantable stimulator to deliver the determined maximum stimulation current level, and selecting, by the external control device in accordance with the calibration table, a transmit power level that results in the implantable stimulator operating at substantially the optimal compliance voltage during the stimulation frame. Corresponding methods, apparatuses and systems are also disclosed.
Abstract:
A method of manufacturing a multicolored illuminator is disclosed. In an embodiment, a first transparent sheet (499) comprising light diffusing particles is provided. Second and third transparent cladding sheets (404) are provided on either sides of the first transparent sheet. A mirror (406) is provided adjacent to the second sheet. The first sheet, second sheet, third sheet and mirror are merged to give a multicolored illuminator.
Abstract:
A programmable spectrum light source is disclosed. In one embodiment, the programmable light source comprises a light source, a spectrum separation system that splits the light into its constituent spectral components, a light modulator that modulates the spectral components according to a required spectral envelope and a light recombination system that recombines the shaped spectral components to produce light with a required spectrum.
Abstract:
An apparatus and method for a light source are disclosed. The apparatus comprises a light guide including light extracting features and at least one light source placed near an end of the light guide. Light from the light source gets deflected by the light extracting features and emanates in a predetermined pattern along a surface of the light guide. The light guide has different thicknesses in different parts.
Abstract:
A currency genuineness detection system using plurality of opto-electronic sensors with both transmission and reflective (including fluorescence) properties of security documents is developed. Both detection sensing strategies utilise integrated response of the wide optical band sensed under UV visible along with optional near infra red light illumination. A security document is examined under static condition. A window signal signature is thus possible from photodetectors responses for various kinds of documents of different denominations, kinds and country of origin. A programmable technique for checking the genuineness of a security document is possible by feeding a unique code of the currency under examination.
Abstract:
A multicolored linear light source is disclosed. In an embodiment the multicolored linear light source (100) comprises a linear light source (100) emanating light of a first spectrum, and regions of photoluminescent material (102,104,106). The light of the first spectrum interacts with regions of photoluminescent material (102,104,106) to give light of a different spectrum. The composition of different regions of photoluminescent material is different, providing light of different spectra in different regions.
Abstract:
A universal materials testing machine is disclosed. In one embodiment, the machine comprises a plurality of grips holding a circular material specimen sheet; the grips being capable of pulling the material specimen radially outward. Each grip is connected to a force measurement sensor such as a load cell. The grip and the load cell assembly is connected to a linear actuator assembly. The linear actuator assembly comprises a motor connected to an arm that can move along a straight line. The actuator pulls or pushes the load cell and grip assembly. A camera module captures images of the specimen while being stretched or released. A data processing system gathers camera module images along with force measurements from the load cells. An analysis module running on the data processing unit computes stress and strain measurements and fits them to user selectable material model.
Abstract:
An exemplary method of acoustically controlling a cochlear implant system includes acoustically transmitting, by a remote control subsystem, a control signal comprising one or more control parameters, detecting, by a sound processing subsystem communicatively coupled to a stimulation subsystem implanted within a patient, the control signal, extracting, by the sound processing subsystem, the one or more control parameters from the control signal, and performing, by the sound processing subsystem, at least one operation in accordance with the one or more control parameters. Corresponding methods and systems are also described.
Abstract:
An exemplary method includes generating, by an external control device selectively and communicatively coupled to an implantable stimulator, a calibration table indicating transmit power levels required to achieve a plurality of distinct combinations of compliance voltages and maximum stimulation current levels by the implantable stimulator, determining, by the external control device, a maximum stimulation current level to be delivered by the implantable stimulator via one or more electrodes to one or more stimulation sites within a patient during a stimulation frame, determining, by the external control device, an optimal compliance voltage that allows the implantable stimulator to deliver the determined maximum stimulation current level, and selecting, by the external control device in accordance with the calibration table, a transmit power level that results in the implantable stimulator operating at substantially the optimal compliance voltage during the stimulation frame. Corresponding methods, apparatuses and systems are also disclosed.
Abstract:
A programmable spectrum light source is disclosed. In one embodiment, the programmable light source comprises a light source, a spectrum separation system that splits the light into its constituent spectral components, a light modulator that modulates the spectral components according to a required spectral envelope and a light recombination system that recombines the shaped spectral components to produce light with a required spectrum.