摘要:
A fuel is conditioned in a fuel supply system for more efficient combustion in a combustion chamber. The conditioning system includes a fuel vessel for fuel conditioning, at least one fuel dispersing nozzle mounted for discharge into the fuel vessel, at least one gas inlet port and at least one conditioned fuel outlet. A low level sensor registers a lower level of conditioned fuel in the fuel vessel. A high level sensor registers an upper level of conditioned fuel in the fuel vessel. A gas source feeds a gas to the fuel vessel, wherein the gas is dissolved in the liquid fuel for forming a liquid/gas fuel solution. A low-pressure fuel pump and a liquid fuel supply line supply liquid fuel from a fuel reservoir to the at least one dispersing nozzle of the fuel vessel at a pressure P1 higher than the gas pressure P2. A needle valve positioned downstream the fuel chamber, lowers the pressure, created in the fuel chamber by gas pressure P2, to lower level P3 downstream the needle valve. A resulting over-saturation causes gas to escape from solution. A high-pressure fuel pump feeds the homogeneous liquid into a combustion chamber at a pressure P4 that is higher than a pressure P5 in the combustion chamber at a moment of combustion. Finally, there is provided an electronic control system connected to receive a signal from the low level sensor and from the high level sensor for controlling the fuel level in the fuel chamber.
摘要:
A method is provided for controlling fuel flow to the combustor of a gas generator turbine during sudden changes in load or during a surge cycle of the process turbocompressor. Surge control is initiated by analog input signals emanating from various devices located throughout the compressor-process system. The fuel control system includes input signals from the gas turbine driver. These signals are acted upon by the fuel control system which transmits a signal to a fuel valve actuator that controls the valve that meters fuel to the combustor. In addition to this sequence of control communication, however, is a rate-of-change in the amount of the fuel provided. The rate of the increase of the amount of fuel is determined by current operating functions of the fuel control system. However, because of the characteristics of general load rejection and recovery, and the abrupt nature of surge, the rate of change in the flow rate of fuel is extremely high. This rapid increase of fuel to the combustor may lead to dangerous excursions in temperature, resulting in high temperatures in gas turbine elements. Consequently, a new function is added to the fuel control system's operation whereby improved regulation of the rate of increase of fuel is achieved. This new function receives a signal that either surge or a change in load has been detected. Next, a signal is transmitted to the fuel valve actuator, regulating fuel to the combustor, thus power to the power turbine, thereby preventing overspeeding. After that, the rate of change of the fuel valve is limited for a period of time. Once recovery has been accomplished, the change rate of the fuel valve is gradually returned to a normal operating setting.
摘要:
Systems and methods are disclosed for the automatic control of one or more pumping and compressing machines and of the related fluid network. The purpose of such systems and methods is to maintain only the required pressure just after a source or just before a user so as to reduce the compressing or pumping energy required; to divide the load within a group of one or more compressing or pumping machines so as to compress the fluid with reduced use of energy and improved pressure control; to improve protection of the turbo compressors when used in parallel from dangerous levels of operation.
摘要:
A fuel is conditioned in a fuel supply system for more efficient combustion in a combustion chamber. The conditioning system includes a plurality of vessels, each defining a fuel chamber for fuel conditioning, at least one fuel dispersing nozzle mounted for discharge into the fuel chamber, at least one gas inlet port, a gas outlet port with a gate valve and a pressure reducer mounted thereon. A low level sensor registers a low level of conditioned fuel in the fuel chamber. A gas source feeds a gas to the vessels wherein the gas is dissolved in the liquid fuel for forming a liquid/gas fuel solution. A gas delivery and gas pressure control system with flow-directional valves and gas pressure regulators supply gas and maintain a relatively high, first gas pressure P1 and a relatively low, second gas pressure P2. A low-pressure fuel pump and a liquid fuel supply line supply liquid fuel from a fuel reservoir to the at least one dispersing nozzle of each fuel chamber at a third pressure P3 higher than the first pressure P1. A high-pressure fuel pump feed the conditioned fuel to a combustion chamber at a fourth pressure P4 that is higher than a pressure in the combustion chamber at a moment of combustion. Finally, there is provided an electronic control system connected to receive a signal from the low level sensor and for switching the gas delivery and gas pressure control system over from the fuel chamber indicated by the sensor as depleted to supply the conditioned fuel from another, filled-up fuel chamber.
摘要:
Steam turbine speed-control systems often incorporate pilot valves for the purpose of controlling the position of hydraulic actuators for steam valves. However, the operational efficiency of these pilot valves can suffer from imperfections due to manufacturing defects, wear, and the like, thereby impairing the control system's overall performance. For these reasons, this disclosure relates to a method for overcoming a faulty pilot valve by incorporating a control system (including additional controllers) dedicated to the pilot valve. In this type setup, not only can the position of the pilot valve be a control variable, but the velocity of actuation of this valve can also be used as another control variable. Therefore, the results of separate controllers, using these two control variables, can be combined to improve the dynamic response of the steam turbine speed-control system.
摘要:
A control apparatus for antisurge protection of a dynamic compressor including a junction of a closed antisurge loop with a surge limit computing module and a two mode controller with a relay backup system with deviation alarms is characterized in operation in that during a slow disturbance, the two mode controller provides modulated antisurge protection by opening a relief valve, if the operating point of the compressor crosses the surge control line and during a dangerously fast disturbance, the relay backup system provides antisurge protection if a preestablished deviation of the operating point from the surge control line appears. A relay backup system opens the relief valve very quickly. When the relief valve is so opened, the process of the user of fluid from the compressor is compensated by increasing the performance of the compressor to maintain pressure of flow rate. Then the relay system closes the relief valve with a relatively slow speed, which prevents a dangerous deviation of the operating point from the surge control line. In time, the surge limit line may change so that the surge control line is no longer correctly placed. If under such circumstances surge appears, then the backup relay system opens the relief valve very fast, closes it with a relatively slow speed and changes the position of surge control line.
摘要:
A fuel conditioning method is applicable to common rail direct injection or unit injector system. A liquid fuel is conditioned for higher-efficiency combustion in a combustion chamber. The conditioning system includes a fuel vessel for fuel conditioning, at least one fuel dispersing nozzle mounted for discharge into the fuel conditioning vessel, at least one gas inlet port, and at least one conditioned fuel outlet port located in the vessel. A gas source feeds a gas to the fuel conditioning vessel, wherein the gas is dissolved in the liquid fuel for forming a liquid/gas fuel solution. A low-pressure fuel pump and a liquid fuel supply line deliver liquid fuel from a fuel tank to the at least one dispersing nozzle of the fuel vessel at pressure P1 higher than the gas pressure P2. A high-pressure fuel pump feeds the liquid fuel/gas solution into a common rail and further into fuel injectors, providing a pressure P4 higher than a pressure P5 in the combustion chamber at a moment of combustion.
摘要:
Steam turbine speed-control systems often incorporate pilot valves for controlling the position of hydraulic actuators for steam valves. Operational efficiency of these pilot valves can suffer from imperfections due to manufacturing defects, wear, contaminated oil, and the like, thereby impairing the control system's overall performance. This disclosure relates to a method for improving performance accuracy by incorporating a control system (including additional controllers) dedicated to overcoming the deficiencies of pilot valves or other control system components. With such a system, the lack of adequate control response can be detected by calculating the first time-derivative of a variety of main controlled-parameters. Such parameters can be directly related to steam flow control, such as steam valve position, steam flow rate, and pressure within the steam turbine; or they may be related to the driven equipment: generator power output, flow rate through a compressor, and compressor discharge pressure.
摘要:
An improved method is provided for controlling fuel flow to the combustor of a gas generator turbine during sudden changes in load or during a surge cycle of the process turbocompressor. Surge control is initiated by analog input signals emanating from various devices located throughout the compressor-process system. The fuel control system includes input signals from the gas turbine driver. These signals are acted upon by the fuel control system which transmits a signal to a fuel valve actuator that controls the valve that meters fuel to the combustor. In addition to this sequence of control communication, however, is a rate-of-change in the amount of the fuel provided. The rate of the increase of the amount of fuel is determined by current operating functions of the fuel control system. However, because of the characteristics of general load rejection and recovery, and the abrupt nature of surge, the rate of change in the flow rate of fuel is extremely high. This rapid increase of fuel to the combustor may lead to dangerous excursions in temperature, resulting in high temperatures in gas turbine elements. Consequently, a new function is added to the fuel control system's operation whereby improved regulation of the rate of increase of fuel is achieved. This new function receives a signal that either surge or a change in load has been detected. Next, a signal is transmitted to the fuel valve actuator, regulating fuel to the combustor, thus power to the power turbine, thereby preventing overspeeding. After that, the rate of change of the fuel valve is limited for a period of time. Once recovery has been accomplished, the change rate of the fuel valve is gradually returned to a normal operating setting.
摘要:
A method and apparatus for maintaining a main process gas parameter such as suction pressure discharge pressure, discharge flow, etc. of a compressor station with multiple dynamic compressors, which enables a station controller controlling the main process gas parameter to increase or decrease the total station performance to restore the main process gas parameter to a required level, first by simultaneous change of performances of all individual compressors, for example, by decreasing their speeds, and then after operating points of all machines reach their respective surge control lines, by simultaneous opening of individual antisurge valves. In the proposed load-sharing scheme, one compressor is automatically selected as a leading machine. For parallel operation, the compressor which is selected as the leader is the one having the largest distance to its surge control line. For series operation, the leader has the lowest criterion "R" value representing both the distance to its surge control line and the equivalent mass flow rate through the compressor. The leader is followed by the rest of the compressors, which equalize their distances to the respective surge control lines or criterions "R" with respect to that of the leader.