摘要:
Methods for etching silicon-based antireflective layers are provided herein. In some embodiments, a method of etching a silicon-based antireflective layer may include providing to a process chamber a substrate having a multiple-layer resist thereon, the multiple-layer resist comprising a patterned photoresist layer defining features to be etched into the substrate disposed above a silicon-based antireflective coating; and etching the silicon-based antireflective layer through the patterned photoresist layer using a plasma formed from a process gas having a primary reactive agent comprising a chlorine-containing gas. In some embodiments, the chlorine-containing gas is chlorine (Cl2).
摘要:
Described herein are methods and apparatus for removing photoresist in the presence of low-k dielectric layers. In one embodiment, the method includes exciting a first mixture of gases having a ratio of a flow rate of reducing process gas to a flow rate of an oxygen-containing process gas that is between 1:1 and 100:1 to generate a first reactive gas mixture. Next, the method includes exposing the photoresist layer that overlays the low-k dielectric layer on a substrate to the first reactive gas mixture to selectively remove the photoresist layer from the dielectric layer. Next, the method includes exposing the photoresist layer to a second reactive gas mixture to selectively remove the photoresist layer from the dielectric layer. The first and second reactive gas mixtures contain substantially no ions when the substrate is exposed to these mixtures in order to minimize damage to the low-k dielectric layer.
摘要:
Described herein are methods and apparatuses for etching low-k dielectric layers to form various interconnect structures. In one embodiment, the method includes forming an opening in a resist layer. The method further includes etching a porous low-k dielectric layer with a process gas mixture that includes a fluorocarbon gas and a carbon dioxide (CO2) gas to form vias. The fluorocarbon gas may be C4F6 gas. A ratio of a flow rate of the C4F6 gas to a flow rate of the CO2 gas can vary from approximately 1:2 to 1:10. In another embodiment, the porous low-k dielectric layer is etched with a process gas mixture that includes a fluorocarbon gas and an argon gas with no CHF3 gas to form trenches aligned with the vias in an integrated dual-damascene structure. The fluorocarbon gas may be CF4 gas.