摘要:
Described herein are methods and apparatuses for etching low-k dielectric layers to form various interconnect structures. In one embodiment, the method includes forming an opening in a resist layer. The method further includes etching a porous low-k dielectric layer with a process gas mixture that includes a fluorocarbon gas and a carbon dioxide (CO2) gas to form vias. The fluorocarbon gas may be C4F6 gas. A ratio of a flow rate of the C4F6 gas to a flow rate of the CO2 gas can vary from approximately 1:2 to 1:10. In another embodiment, the porous low-k dielectric layer is etched with a process gas mixture that includes a fluorocarbon gas and an argon gas with no CHF3 gas to form trenches aligned with the vias in an integrated dual-damascene structure. The fluorocarbon gas may be CF4 gas.
摘要:
Methods are provided for depositing a dielectric material for use as an anti-reflective coating and sacrificial dielectric material in damascene formation. In one aspect, a process is provided for processing a substrate including depositing an acidic dielectric layer on the substrate by reacting an oxygen-containing organosilicon compound and an acidic compound, depositing a photoresist material on the acidic dielectric layer, and patterning the photoresist layer. The acidic dielectric layer may be used as a sacrificial layer in forming a feature definition by etching a partial feature definition, depositing the acidic dielectric material, etching the remainder of the feature definition, and then removing the acidic dielectric material to form a feature definition.
摘要:
A substrate processing apparatus has a chamber having a substrate support, gas distributor, gas energizer, and gas exhaust port. A process monitor is provided to monitor features in a first region of the substrate and generate a corresponding first signal, and to monitor features in a second region of the substrate and generate a second signal. A chamber controller receives and evaluates the first and second signals, and operates the chamber in relation to the signals. For example, the chamber controller can select a process recipe depending upon the signal values. The chamber controller can also set a process parameter at a first level in a first processing sector and at a second level in a second processing sector. The apparatus provides a closed control loop to independently monitor and control processing of features at different regions of the substrate.
摘要:
A parallel plate capacitor in copper technology is formed in an area that has no copper below it (within 0.3 &mgr;m) with a bottom etch stop layer, a composite bottom plate having an aluminum layer below a TiN layer, an oxide capacitor dielectric, and a top plate of TiN; in a process that involves etching the top plate to leave a capacitor area, etching the bottom plate to a larger bottom area having a margin on all sides; depositing an interlayer dielectric having a higher material quality below the top surface of the capacitor top plate; opening contact apertures to the top and bottom plates and to lower interconnect to a two step process that partially opens a nitride cap layer on the lower interconnect and the top plate while penetrating the nitride cap layer above the bottom plate, then cutting through the capacitor dielectric and finishing the penetration of the nitride cap layer.
摘要:
Described herein are methods for fabricating dual-damascene interconnect structures. In one embodiment, the interconnect structures are fabricated with a dual-damascene method having trenches then vias formed. The method includes novel liner depositions after the trench and via etches. The method includes etching trenches in a dielectric layer. Next, the method includes depositing a first liner layer on the dielectric layer. Next, the method includes etching vias in the dielectric layer and an etch stop layer. Next, the method includes depositing a second liner layer on the first liner layer. The second liner layer is deposited on the exposed surfaces of the first liner layer, dielectric layer, etch stop layer, and the first metal layer. Then, a second metal layer is deposited on the second liner layer.
摘要:
An anisotropic etching process for a nitride layer of a substrate, the process comprising using an etchant gas which comprises a hydrogen-rich fluorohydrocarbon, an oxidant and a carbon source. The hydrogen-rich fluorohydrocarbon is preferably one of CH3F or CH2F2, the carbon source is preferably one of CO2 or CO, and the oxidant is preferably O2. The fluorohydrocarbon is preferably present in the gas at approximately 7%-35% by volume, the oxidant is preferably present in the gas at approximately 1%-35% by volume, and the carbon source is preferably present in the gas at approximately 30%-92%.
摘要:
A silicon article including a silicon base and columns extending from the silicon base. The columns define a gap between the columns which is devoid of material so that the article can act as a filter or heat sink. Also disclosed is a method of making the silicon article.
摘要:
Selectivity of SiO.sub.2 to Si.sub.3 N.sub.4 is increased with the additional of silicon rich nitride conformal layer to manufacturing of semiconductor chip. Silicon rich nitride conformal layer may be used in place of or in addition to standard nitride conformal layers in manufacture.
摘要翻译:SiO 2与Si 3 N 4的选择性随着富硅氮化物附加层的附加而增加,从而制造半导体芯片。 富含氮的氮化物保形层可以代替制造中的标准氮化物保形层来代替标准氮化物保形层。
摘要:
The etch depth during trench over via etch of a dual damascene structure in a dielectric film stack is controlled to be the same over the dense area and the open area of a substrate and solve micro-loading problems. The trench etch process is adapted to include a forward micro-loading etching process and a reverse micro-loading etching process using two etch chemistries together with the inclusion of a dopant material layer or an organic fill material layer during the deposition of the dielectric film stack. In one embodiment, etching of trenches over vias is switched from forward micro-loading to reverse micro-loading once etching of the dielectric film stack is reached at a predetermined location of a dopant material layer. In another embodiment, etching of an organic trench filling material layer is performed in a reverse micro-loading process followed by etching the dielectric film stack in a forward micro-loading process.
摘要:
A substrate comprising a resist layer overlying a dielectric feature, is processed in a substrate processing chamber comprising an antenna, and first and second process electrodes. A process gas comprising CO2 is introduced into the chamber. The process gas is energized to form a plasma by applying a source voltage to the antenna, and by applying to the electrodes, a first bias voltage having a first frequency of at least about 10 MHz and a second bias voltage having a second frequency of less than about 4 MHz. The ratio of the power level of the first bias voltage to the second bias voltage is sufficient to obtain an edge facet height of the underlying dielectric feature that is at least about 10% of the height of the dielectric feature.