Abstract:
There is disclosed a production device for a loose tube-type optical cable in which an optical fiber bundle is housed in a tube. The production device includes: a resin extruder configured to extrude and coat a resin onto the optical fiber bundle; and a water tank configured to store cooling water for cooling the resin to form the tube, wherein: the resin extruder includes: an extruder die having an extrusion port for the resin; a pipe penetrating the extruder die; and an air pump mechanism configured to pump air to the pipe; and the water tank includes: a sizing die having an inlet, a passage port, and a suction port for the cooling water; and a cooling water suction mechanism configured to suck the cooling water from the sizing die.
Abstract:
An aluminum alloy wire manufacturing method comprises (A) a step for melting an aluminum alloy containing 0.40-0.55 mass % of Mg and 0.45-0.65 mass % of Si, the balance being obtained from Al and unavoidable impurities, (B) a step for casting molten metal of the aluminum alloy and rolling to form a rough-drawn wire rod, (C) a step for solutionizing the rough-drawn wire rod, (D) a step for drawing the rough-drawn wire rod after solutionizing to form a drawn wire rod with a wire diameter of 0.5 mm or less, and (E) a step for heat treatment so that internal strain is removed with substantially no deposition of Mg2Si.
Abstract:
A coil according to one embodiment of the present invention is a coil in which a first electric wire on an inner peripheral side and a second electric wire on an outer peripheral side are wound side by side to connect ends of the electric wires with each other, and the coil includes a first region where the first electric wire abuts on the second electric wire of another adjacent turn and separates from the second electric wire of a same turn.
Abstract:
A polymer bushing includes: an inner conductor; a hard insulating tube; a shielding metal fitting; a polymer covering that includes a body part that covers an outer periphery of the insulating tube, and a plurality of umbrella-shaped sheds that are formed at an outer periphery of the body part; and an electric-field stress-control layer that is composed of a zinc oxide layer or a high-permittivity layer, and is disposed along an interface between the insulating tube and the polymer covering. A rear end part of the electric-field stress-control layer is connected to the shielding metal fitting. The body part includes a first body part that has a uniform thickness, and a second body part that is located in a region around a front end part of the electric-field stress-control layer and has a thickness greater than the thickness of the first body part.
Abstract:
An oxide superconductor includes: a substrate made of a metal; an insulating intermediate layer provided on the substrate; an oxide superconducting layer provided on the intermediate layer; a metal stabilizing layer provided on the oxide superconducting layer; and a plurality of dividing grooves which divide the metal stabilizing layer and the oxide superconducting layer along a longitudinal direction of the substrate, reach the inside of the intermediate layer through the oxide superconducting layer from the metal stabilizing layer, and do not reach the substrate. The metal stabilizing layer and the oxide superconducting layer are divided to form a plurality of filament conductors by the plurality of dividing grooves, and in each dividing groove of the plurality of dividing grooves, a width of a groove opening portion of the dividing groove is equal to or greater than a width of a groove bottom portion of the dividing groove.
Abstract:
An oxide superconductor includes: a substrate made of a metal; an insulating intermediate layer provided on the substrate; an oxide superconducting layer provided on the intermediate layer; a metal stabilizing layer provided on the oxide superconducting layer; and a plurality of dividing grooves which divide the metal stabilizing layer and the oxide superconducting layer along a longitudinal direction of the substrate, reach the inside of the intermediate layer through the oxide superconducting layer from the metal stabilizing layer, and do not reach the substrate. The metal stabilizing layer and the oxide superconducting layer are divided to form a plurality of filament conductors by the plurality of dividing grooves, and in each dividing groove of the plurality of dividing grooves, a width of a groove opening portion of the dividing groove is equal to or greater than a width of a groove bottom portion of the dividing groove.
Abstract:
A coil according to one embodiment of the present invention is a coil in which a first electric wire on an inner peripheral side and a second electric wire on an outer peripheral side are wound side by side to connect ends of the electric wires with each other, and the coil includes a first region where the first electric wire abuts on the second electric wire of another adjacent turn and separates from the second electric wire of a same turn.
Abstract:
An aluminum alloy wire manufacturing method comprises (A) a step for melting an aluminum alloy containing 0.40-0.55 mass % of Mg and 0.45-0.65 mass % of Si, the balance being obtained from Al and unavoidable impurities, (B) a step for casting molten metal of the aluminum alloy and rolling to form a rough-drawn wire rod, (C) a step for solutionizing the rough-drawn wire rod, (D) a step for drawing the rough-drawn wire rod after solutionizing to form a drawn wire rod with a wire diameter of 0.5 mm or less, and (E) a step for heat treatment so that internal strain is removed with substantially no deposition of Mg2Si.
Abstract:
A method of manufacturing a heat-fixing rubber roller includes: forming a rubber layer of a silicone rubber composition on an outer periphery of a metal core shaft, the composition containing water-soluble sugar powder and methylene glycol; vulcanizing the rubber layer; and eluting the sugar powder and the triethylene glycol from the vulcanized rubber layer to form a foam rubber layer.
Abstract:
Provided is an oxide superconductor composition that makes it possible to increase film thickness, increase production speed, and decrease costs when producing a REBaCuO-type oxide superconductor wire (wherein RE is at least one element selected from the group consisting of Y, Nd, Sm, Gd, Dy, Eu, Er, Yb, Pr, and Ho). The oxide superconductor comprises, as essential components thereof, an RE salt of a carboxylic acid that serves as an RE component, that does not contain a ketone group, and that has 3-8 carbon atoms, barium trifluoroacetate that serves as a Ba component, one or more copper salts that serve as a Cu component and that are selected from the group consisting of copper salts of branched saturated aliphatic carboxylic acids having 6-16 carbon atoms and copper salts of alicyclic carboxylic acids having 6-16 carbon atoms, and an organic solvent that dissolves the aforementioned metal salt components.