Abstract:
An optical lens forming mold is adapted to press and form a glass preform into an optical lens. The forming mold includes a sleeve, a lower mold core, and an upper mold core. The upper mold core and the lower mold core are disposed within the sleeve opposite to each other, and the glass preform is disposed between the upper mold core and the lower mold core. At least one edge of the upper mold core and the lower mold core is surroundingly arrangement with a baffle. The glass preform is pressed and formed into an optical lens by the upper mold core and the lower mold core, and a shape of the optical lens to be formed is controlled by the battle.
Abstract:
A variable resistance hinge is mounted in a notebook computer having cover and a base and the hinge has a stationary leaf, a pivoting leaf and a pressing assembly. The stationary leaf is attached to the base and has a keyed shaft. The pivoting leaf is mounted pivotally on the shaft and is attached to the cover. The pressing assembly is mounted around the shaft, presses the pivoting leaf against the stationary leaf and has a pivoting ring and a stationary ring. The pivoting ring rotates around the shaft, is attached to the pivoting leaf and has at least one stepped detent. The stationary ring engages the shaft, abuts the pivoting ring and has at least one friction protrusion. Each friction protrusion corresponds a stepped detent and provides variable friction when opening the cover to enhance lifespan of the hinge and facilitate opening of the notebook.
Abstract:
A variable resistance hinge is mounted in a notebook computer having cover and a base and the hinge has a stationary leaf, a pivoting leaf and a pressing assembly. The stationary leaf is attached to the base and has a keyed shaft. The pivoting leaf is mounted pivotally on the shaft and is attached to the cover. The pressing assembly is mounted around the shaft, presses the pivoting leaf against the stationary leaf and has a pivoting ring and a stationary ring. The pivoting ring rotates around the shaft, is attached to the pivoting leaf and has at least one stepped detent. The stationary ring engages the shaft, abuts the pivoting ring and has at least one friction protrusion. Each friction protrusion corresponds a stepped detent and provides variable friction when opening the cover to enhance lifespan of the hinge and facilitate opening of the notebook.
Abstract:
A hinge assembly is mounted in an electronic appliance such as a notebook and has a stationary leaf, a pintle and a pivoting leaf. The notebook has a base and a cover. The stationary leaf is mounted securely on the base and has a pivoting sleeve having an outer edge, a limiting tab and at least one braking detent. The limiting tab and braking detent adjacently protrude longitudinally from the outer edge of the pivoting sleeve. The pintle is mounted rotatably in the stationary leaf and has an outer end and a limiting rod. The limiting rod is mounted securely in the pintle and selectively limits rotation of the hinge in both directions to leave a small gap when the cover folds toward the base to facilitate opening. The pivoting leaf is mounted securely on the outer end of the pintle and connects to the cover securely.
Abstract:
A stable hinge keeps elements of the hinge from shaking and has a pivoting assembly, a stabilizer and a stationary assembly. The pivoting assembly attaches the stable hinge to a cover of an electronic device and has a standoff, a leaf and a barrel. The standoff has a proximal edge, a distal edge and a notch formed in the proximal edge. The leaf is formed longitudinally on and protrudes from the distal edge. The barrel is formed longitudinally on the proximal edge and has a slot. The stabilizer is mounted in the slot and to the standoff. The stationary assembly attaches to a base of an electronic device and is mounted rotatably in the barrel and through the stabilizer to stabilize the hinge and give the stable hinge a longer useful life.
Abstract:
The present invention relates to a silicon-containing copolymer which includes a maleic anhydride repeating unit, a norbornene repeating unit, and at least one silicon group-containing norbornene repeating unit. The silicon-containing copolymer is suitable for use as a top layer resist in a bilayer resist system.
Abstract:
The present invention provides a cyclic dione polymer, which is a homopolymer or a copolymer of a cyclic dione monomer selected from those represented by formulae (I) and (II) wherein A and B may be the same or different and are independently selected from the group consisting of halogen, hydrogen, C3-20 cyclic or pericyclic alkyl, C1-20 linear and branched alkyl, C6-20 aryl, C7-20 arylalkyl, C7-20 alkylaryl, silyl, alkylsilyl, germyl, alkylgermyl, alkoxycarbonyl, acyl, and a heterocylic group; or, A and B are linked together to form a C3-20 saturated or unsaturated cyclic hydrocarbon group or a substituted or unsubstituted heterocyclic group; C is selected from the group consisting of oxygen, sulfur, —CH2—, and —SiH2—, wherein each R1 is independently selected from C1-20 alkyl and phenyl.
Abstract:
A 360° bi-directional rotary hinge formed of a fixed bracket, a rotary bracket, a limiter plate, a stop plate, a positioning plate, a spring ring and a fastening member for use in a folding electronic device is disclosed. Subject to matching between bottom blocks of the limiter plate and arched sliding grooves of the stop plate, movement of the stop plate is constrained by the fixed bracket, and therefore rotation of the rotary bracket of the 360° bi-directional rotary hinge is limited to a forward and backward 360° angle. Further, the stop plate carries an index block corresponding to a −180° angle indication hole and a 180° angle indication hole on the base member of the folding electronic device for giving an indication when the rotary bracket is rotated to +180° or −180° angle relative to the fixed bracket.
Abstract:
A pivot hinge includes: a fixing seat having therein a round hole from which two grooves forming an inversed “V” shape are extended downwards, the grooves include two bevel groove segments extending laterally and obliquely form the central bottom of the round hole to two different directions at the opening of the round hole, and include two vertical groove segments formed on the ends of the bevel groove segments respectively; a shaft of a rotation axle extends into the round hole; and includes: at least two mutually reversely allocated “9” shaped spring tubes each having a slipping over portion over the shaft surface, the portion is formed on its periphery a slit, a lower area of each slipping over portion has a positioning sheet extending downwards obliquely but not radially, each positioning sheet has a bottom vertical portion; the positioning sheets and the vertical portions are slipped respectively in the bevel and the vertical groove segments, an area at an upper area of each positioning sheet contacting with an upper area of a corresponding bevel groove segment forms a surface contacting fulcrum.
Abstract:
The present invention relates to a cover latch for an electronic device and includes a body, a latch bar, an actuator and a driver. The driver is connected to the cover body, the actuator and the latch bar. Only one hand is required to unlatch the cover latch by rotating the actuator and the driver that moves the latch bar.