Abstract:
Described herein are methods for treating or preventing urological inflammation in a subject comprising administering to the subject an effective amount of a compound comprising a. a modified hyaluronan or a pharmaceutically acceptable salt or ester thereof, wherein said hyaluronan or its pharmaceutically acceptable salt or ester comprises at least one sulfate group and at least one primary C-6 hydroxyl position of an N-acetyl-glucosamine residue comprising an alkyl group or fluoroalkyl group; b. a partially or fully sulfated hyaluronan or the pharmaceutically acceptable salt or ester thereof, or a combination thereof.
Abstract:
The present invention provides a cell or stack for evaluating the performance of a fuel cell and a method of evaluating the performance of the fuel cell using the cell or stack, in which a semiconductor thermoelectric device, attached to the side surface of the unit cell or stack of the fuel cell, is provided maintain the cell or stack at a uniform temperature. The temperatures of an anode and a cathode of the fuel cell can be precisely changed or maintained such that the performance of the fuel cell can also be measured in sub-zero temperature conditions without requiring a separate environmental chamber. A rate of temperature decrease, at which the temperature decreases to a certain sub-zero temperature, or a rate of temperature increase can be precisely controlled.
Abstract:
Disclosed are a micro-fluidic structure for detecting biomolecules and a micro-fluidic device having the same. More particularly, a target material including at least two cis-diols is detected by a first material containing a boronate moiety and a second material containing another boronate moiety while generating electrical signals.
Abstract:
Disclosed is an integrated multi-measurement system for measuring physical properties including thickness, electrical resistance and differential pressure of a gas diffusion layer for a polymer electrolyte fuel cell with respect to compression. The integrated multi-measurement system simultaneously measures changes in the physical properties of the gas diffusion layer depending on pressure upon measurement of the physical properties of the gas diffusion layer of the fuel cell and also measures through-plane permeability in which a gas is passed through a sample in a direction perpendicular to the sample and in-plane permeability in which a gas is passed through a sample in a direction parallel to the sample.
Abstract:
A highly proton conductive polymer electrolyte composite membrane for a fuel cell is provided. The composite membrane includes crosslinked polyvinylsulfonic acid. The composite membrane is produced by impregnating a mixed solution of vinylsulfonic acid as a monomer, a hydroxyl group-containing bisacrylamide as a crosslinking agent and a photoinitiator or thermal initiator into a microporous polymer support, polymerizing the monomer, and simultaneously thermal-crosslinking or photo-crosslinking the polymer to form a chemically crosslinked polymer electrolyte membrane which is also physically crosslinked with the porous support. Further provided is a method for producing the composite membrane in a simple manner at low cost as well as a fuel cell using the composite membrane.
Abstract:
An optical system is provided. The optical system includes a luminous system which comprises a plurality of light source devices and an image unit; and a projection system which receives light having an image through the luminous system, and enlarges and projects the light, wherein the plurality of light source devices comprise a reflection member which reflects light beam emitted from the light source devices, and are disposed so that the light beam emitted from the light source devices is reflected by the reflection member one time and enters to the image unit.
Abstract:
An illumination optical unit and a display apparatus having the same are provided. The display apparatus includes an illumination optical unit which generates and illuminates light; a display element which forms an image by the light illuminated from the illumination optical unit; and a projection optical unit which projects the image formed in the display element on a screen. The illumination optical unit includes a light source which includes a light emitting area, and a polarization converting unit which includes a plurality of polarization prisms which polarize and convert an entering light from the light source. The light source is disposed so that a long width of the light emitting area corresponds to a long width of the polarization prisms.
Abstract:
An illumination unit and an image projection apparatus employing the same. The illumination unit includes: a first reflective surface reflecting light incident thereon; a light-emitting device generating and emitting illuminating light; and a second reflective surface reflecting light emitted from the light-emitting device to a light source surface that includes the light-emitting device.
Abstract:
An illumination unit with an improved color synthesis prism, which can synthesize light beams emitted from compact light sources, and a projection type image display apparatus employing the illumination unit. The illumination unit includes first, second, and third light source units to emit first, second, and third light beams of different wavelength bands, a first triangular prism including a first entrance surface through which the first beam emitted from the first light source unit is incident, a first exit/reflection surface inclined with respect to the first entrance surface, and a second entrance surface on which the first light beam reflected by the first exit/reflection surface and the second light beam emitted from the second light source unit are incident, a second triangular prism including a third entrance surface through which the third light beam emitted from the third light source unit is incident, a second exit/reflection surface inclined with respect to the third entrance surface, and a fourth entrance surface facing the first exit/reflection surface and spaced a predetermined distance from the first exit/reflection surface, a first color filter formed on the second entrance surface to reflect the first light beam incident from the first exit/reflection surface and to transmit the second light beam such that the first and second light beams are directed toward the first exit/reflection surface, and a second color filter formed on the fourth entrance surface to reflect the third light beam incident from the second exit/reflection surface and to transmit the first and second light beams transmitted from the first exit/reflection surface such that the first, second, and third light beams are directed toward the second exit/reflection surface.
Abstract:
An illumination unit is provided which includes a glass rod including a parabolic reflection surface, a light incident surface facing the parabolic reflection surface, a concave portion formed inwardly in the light incident surface at a position of a focal point of the parabolic reflection surface, and a light guide portion facing the parabolic reflection surface and having a rectangular section. An LED module is disposed at the focal point of the parabolic reflection surface and emitting light to the parabolic reflection surface through the concave portion. A surface of the light guide portion parallel to the light incident surface is stepped from the light incident surface in a direction in which the rectangular section of the light guide portion decreases.