Abstract:
Methods and systems for resizing an image utilizing content-aware seam operations include defining low-energy seams defining contextually less-important information and utilizing such information for interpolation based on one-dimensional manifolds. The interpolation can form new seams and/or regenerated pixels that can be combined with the image to provide a content-aware resized image exhibiting smooth and continuous features.
Abstract:
Embodiments of the invention provide analyte sensors and sensor systems such as amperometric glucose sensors used in the management of diabetes as well as optimized methods for monitoring analytes using such sensors and sensor systems.
Abstract:
An optical de-multiplexer (de-MUX) that includes an optical device that images and diffracts an optical signal using a reflective geometry is described, where a free spectral range (FSR) of the optical device associated with a given diffraction order abuts FSRs associated with adjacent diffraction orders. Moreover, the channel spacings within diffraction orders and between adjacent diffraction orders are equal to the predefined channel spacing associated with the optical signal. As a consequence, the optical device has a comb-filter output spectrum, which reduces a tuning energy of the optical device by eliminating spectral gaps between diffraction orders of the optical device.
Abstract:
Plastic capillaries are used as a reaction template; firstly, sol-PZT is prepared; then, PZT nanometer powder is added into the sol-PZT and blended uniformly to form suspension, the plastic capillaries are put into a quartz tube, the gaps between the capillaries and the gaps between the quartz tube and the plastic capillaries are filled with paraffin and solidified to a required array shape, the quartz tube is dipped into the suspension, after full absorption, the rest suspension is poured into the quartz tube and filtered from the other end, so that the suspension is pumped into the plastic capillaries until the capillaries are full of suspension. The quartz tube is dried until no excessive liquid component and then taken out to be dipped, filtered and dried; removal of template and crystallization heat treatment is then performed for the dried container.
Abstract:
An optical source uses feedback to maintain a substantially fixed spacing between adjacent wavelengths in a set of wavelengths in a wavelength comb output by the optical source. In particular, a set of light sources in the optical source provide optical signals having the set of wavelengths. Moreover, the optical signals are output at diffraction angles of an optical device in the optical source (such as an echelle grating), and optical detectors in the optical source determine optical metrics associated with the optical signals. Furthermore, control logic in the optical source provides control signals to the set of light sources based on the determined optical metrics.
Abstract:
An optical de-multiplexer (de-MUX) that includes an optical device that images and diffracts an optical signal using a reflective geometry is described, where a free spectral range (FSR) of the optical device associated with a given diffraction order abuts FSRs associated with adjacent diffraction orders. Moreover, the channel spacings within diffraction orders and between adjacent diffraction orders are equal to the predefined channel spacing associated with the optical signal. As a consequence, the optical device has a comb-filter output spectrum, which reduces a tuning energy of the optical device by eliminating spectral gaps between diffraction orders of the optical device.
Abstract:
A laser source includes an optical cavity having a length exceeding a first predefined distance (such as 6 mm), where a wavelength spacing between optical modes associated with the optical cavity is less than a second predefined distance (such as 100 pm). Moreover, a gain medium in the laser source amplifies the optical signal. Furthermore, tunable-grating waveguides in the laser source, which are optically coupled to ends of the optical cavity, reflect a portion of the optical signal back into the optical cavity, and at least one of the tunable-grating waveguides transmits a remainder of the optical signal out of the optical cavity.
Abstract:
An electrophoretic display device includes a common electrode, an electrophoresis layer, and pixel electrodes. The electrophoretic layer includes cavities, with each cavity arranged between one of the pixel electrodes and the common electrode, and comprises suspension fluid, first type charged particles, and second type charged particles. The first type charged particles and the second type charged particles are dispersed in the suspension fluid. Three cavities constitute a pixel unit. The first type charged particles and the second type charged particles in each of the three cavities constituting the pixel unit are one of red, green, and blue particles, and one of yellow, magenta, and cyan particles, respectively.
Abstract:
Embodiments of the invention provide amperometric analyte sensors having multiple related structural elements (e.g. sensor arrays comprising a working, counter and reference electrode) and algorithms designed for use with such sensors. While embodiments of the innovation can be used in a variety of contexts, typical embodiments of the invention include glucose sensors used in the management of diabetes.
Abstract:
An electrophoretic display device includes a plurality of pixel electrodes arranged on a lower substrate, and an upper substrate having a common electrode that covers an entire area corresponding to a display surface. The electrophoretic display device further includes an electrophoretic ink layer having a plurality of cavities. Each of the cavities contains suspension fluid and a plurality of charged pigment particles dispersing in the suspension fluid. The electrophoretic display device also includes a plurality of pixel units, each of which includes three of the plurality of cavities. Each of the three cavities contains the black particles and particles of the red particles, green particles, or blue particles, respectively.