Abstract:
An electrical machine includes a stator core and a plurality of windings subdivided into a plurality of multiphase motor cells, each multiphase motor cell having M windings associated therewith, and having a phase shift relative to other multiphase motor cells. The electrical machine may include N inverter cells coupled in series; wherein each inverter cell is a multiphase inverter; and wherein the voltage magnitude supplied to a corresponding multiphase motor cell is VDC/N. The electrical machine may include a sensor system in communication with the plurality of inverter cells and operative to commutate each inverter cell in a sequence.
Abstract:
The subject matter described herein includes a multiphase fractional slot concentrated winding machine. One such machine includes a machine module including a rotor and a stator. The stator includes a plurality of radially extending teeth. Each tooth is individually wound with a coil. The machine further includes a multiphase series converter circuit physically connected to an end of the machine module to energize the coils for multiphase operation.
Abstract:
A power converter includes an output converter having a 3-phase or higher output, an inductor coupled to the output converter and a switch device coupled to the inductor. The switch device charges the inductor via a DC input during a first stage of a switching cycle of the switch device. The output converter discharges the inductor to a load coupled to the 3-phase or higher output during a second stage of the switching cycle. The output converter includes a phase leg for each phase of the 3-phase or higher output, each phase leg having a first thyristor device connected in series with a second thyristor device. Each phase of the 3-phase or higher output originates between the first thyristor device and the second thyristor device of the corresponding phase leg.
Abstract:
A power converter includes an output converter having a 3-phase or higher output, an inductor coupled to the output converter and a switch device coupled to the inductor. The switch device charges the inductor via a DC input during a first stage of a switching cycle of the switch device. The output converter discharges the inductor to a load coupled to the 3-phase or higher output during a second stage of the switching cycle. The output converter includes a phase leg for each phase of the 3-phase or higher output, each phase leg having a first thyristor device connected in series with a second thyristor device. Each phase of the 3-phase or higher output originates between the first thyristor device and the second thyristor device of the corresponding phase leg.
Abstract:
A generation and distribution system comprises an adjustable-speed prime mover and a doubly-fed asynchronous alternating-current (AC) generator driven by the prime mover and having a first poly-phase circuit, e.g., a stator, and a second poly-phase circuit, e.g., a rotor. The system further includes a first AC bus electrically coupled to the first poly-phase circuit and configured to deliver AC power at a first AC voltage to multiple loads, and a second AC bus configured to deliver AC power at a second AC voltage to another group of loads, the second AC voltage being lower than the first. Finally, the system includes a poly-phase transformer having first windings electrically coupled to the first poly-phase circuit and the first AC bus and having second windings electrically coupled to the second AC bus, and a poly-phase AC-to-AC electronic converter circuit electrically coupled between the second poly-phase circuit and the second AC bus.
Abstract:
A generation and distribution system includes an adjustable-speed prime mover and a doubly-fed asynchronous alternating-current (AC) generator driven by the prime mover and having a first poly-phase circuit, e.g., a stator, and a second poly-phase circuit, e.g., a rotor. The system further includes a first AC bus electrically coupled to the first poly-phase circuit configured to deliver AC power at a first AC voltage to multiple loads, and a second AC bus connected to the second poly-phase circuit configured to deliver AC power at a second AC voltage to another group of loads, the second AC voltage being lower than the first. The system includes a poly-phase transformer having first windings electrically coupled to the first AC bus and having second windings electrically coupled to the second AC bus, and a poly-phase AC-to-AC electronic converter circuit electrically coupled between the second poly-phase circuit and the second AC bus.
Abstract:
An electrical DC generation system is disclosed. According to one aspect, a system for electrical DC generation system includes an electrical machine, having a positive output terminal and a negative output terminal, a plurality of stator windings, a plurality of passive rectifiers connected to the plurality of stator windings, the plurality of passive rectifiers being connected in series to form an intermediate bus having a positive terminal and a negative terminal. The system also includes a DC-DC converter circuit having input terminals connected to the positive and negative terminals of the intermediate bus and having output terminals electrically isolated from the input terminals and connected in series with the intermediate bus. The DC-DC converter output voltage is adjusted to regulate torque of the electrical machine by adjusting stator current of the electrical machine.
Abstract:
The subject matter described herein includes a fan assembly for cooling an electric machine and an electric machine incorporating such a fan assembly. One exemplary fan assembly according to the subject matter described herein includes a first fan annulus for surrounding a portion of an electric machine. The fan assembly further includes a fan drive circuit for driving the first fan annulus separately from a drive mechanism of the electric machine. The first fan annulus is configured to be, when rotating to cool the electric machine, mechanically disconnected from a housing and a rotor of the electric machine and separated from the housing by radial gap.
Abstract:
An electrical DC generation system is disclosed. According to one aspect, a system for electrical DC generation includes an electrical machine having multiple stator windings and multiple rectifiers for connection to portions of the stator windings. At least one active rectifier and at least one passive rectifier are connected in series to form a DC bus having a positive terminal and a negative terminal, where the positive terminal of the DC bus is connected to a positive output terminal of the electrical machine and where the negative terminal of the DC bus is connected to a negative output terminal of the electrical machine. The at least one active rectifier is used to control a current flowing through the DC bus and/or an output voltage of the electrical machine.
Abstract:
A dual-voltage power generation system includes a prime mover configured for adjustable speed operation and a doubly-fed induction generator driven by the prime mover and including a multi-phase stator winding and a multi-phase rotor winding. A first output terminal of the dual-voltage power generation system is electrically connected to the multi-phase stator winding, and a second output terminal is electrically connected to the multi-phase rotor winding. The dual-voltage power generation system further includes a first converter having an AC side connected to one of the multi-phase windings and an AC or DC side connected to one of the output terminals. The multi-phase stator winding has a different turns ratio than the multi-phase rotor winding and the first output terminal is electrically isolated from the second output terminal so that the generator has two isolated power supply outputs at different voltage levels in a first configuration.