Abstract:
The instant disclosure provides a polymer composite material, the method for manufacturing the polymer composite material, a capacitor package structure using the polymer composite material and the method for manufacturing the capacitor package structure. The polymer composite material is used for the cathode of a capacitor, wherein the polymer composite material includes poly(3,4-ethylenedioxythiophene), polystyrene sulfonate and a nanomaterial. Polystyrene sulfonate is connected between the nanomaterial and poly(3,4-ethylenedioxythiophene), and polystyrene sulfonate is bonded to the poly(3,4-ethylenedioxythiophene) through a polymerization process. The content of the nanomaterial ranges from 0.01-1.5 wt. % based on the weight of the polymer composite material.
Abstract:
A winding-type solid electrolytic capacitor package structure without using any lead frame includes a winding capacitor and a package body. The winding capacitor has a winding body enclosed by the package body, a positive conductive lead pin extended from a first lateral side of the winding body, and a negative conductive lead pin extended from a second lateral side of the winding body. The positive conductive lead pin has a first embedded portion enclosed by the package body and a first exposed portion exposed outside the package body and extended along the first lateral surface and the bottom surface of the package body. The negative conductive lead pin has a second embedded portion enclosed by the package body and a second exposed portion exposed outside the package body and extended along the second lateral surface and the bottom surface of the package body.
Abstract:
The instant disclosure relates to a manufacturing method of capacitor cathode foil structure, comprising the following steps. The first step is providing a base foil, subsequently inserting the foil into a reactor. The next step is executing a heating process for heat the base foil to a temperature region of 400° C. to 1000° C. The next step is directing a carbon containing precursor gas into the reactor. The last step is executing a cooling process for cooling the base foil to a temperature below 100° C. to deposit a graphene-based layer on one surface of the base foil, wherein the graphene-based layer is consisted of a plurality of graphene-based thin films in stacked arrangement.
Abstract:
The instant disclosure provides a solid electrolytic capacitor package structure and method of manufacturing the same. The solid electrolytic capacitor package structure includes a capacitor assembly, at least one electrode pin and a package body enclosing the capacitor assembly and the electrode pin. The electrode pin includes an embedded portion enclosed by the package body and an exposed portion positioned outside the package body. The method of manufacturing the solid electrolytic capacitor package structure includes a protection step including forming a protecting film on the exposed portion; a coating step including depositing a nanomaterial on the solid electrolytic capacitor package structure to form a nanofilm, wherein the nanomaterial penetrates into defects of the solid electrolytic capacitor package structure; and a deprotection step including removing the protecting film. The instant disclosure provides improved air-tight and water-tight properties of the solid electrolytic capacitor package structure, thereby increasing the lifetime thereof.
Abstract:
A winding-type solid electrolytic capacitor package structure without using any lead frame includes a winding capacitor and a package body. The winding capacitor has a winding body enclosed by the package body, a positive conductive lead pin extended from a first lateral side of the winding body, and a negative conductive lead pin extended from a second lateral side of the winding body. The positive conductive lead pin has a first embedded portion enclosed by the package body and a first exposed portion exposed outside the package body and extended along the first lateral surface and the bottom surface of the package body. The negative conductive lead pin has a second embedded portion enclosed by the package body and a second exposed portion exposed outside the package body and extended along the second lateral surface and the bottom surface of the package body.
Abstract:
A winding-type solid electrolytic capacitor package structure includes a substrate body, a winding capacitor, a package body and an electrode unit. The winding capacitor has a winding body, a positive conductive lead pin having a positive end surface, and a negative conductive lead pin having a negative end surface. The package body is disposed on the substrate body to enclose the winding body, and the package body has a first lateral surface substantially flushed with the positive end surface and a second lateral surface substantially flushed with the negative end surface. The electrode unit includes a positive electrode structure for covering the first lateral surface and electrically contacting the positive end surface and a negative electrode structure for covering the second lateral surface and electrically contacting the negative end surface.
Abstract:
A winding-type capacitor package structure and a method of manufacturing the same are provided. The winding-type capacitor package structure includes a winding assembly, a package assembly and a conductive assembly. The winding assembly includes a winding conductive positive foil and a winding conductive negative foil. The package assembly fully encloses the winding assembly. The conductive assembly includes a first conductive pin and a second conductive pin. The package assembly includes a casing structure, a filling body and a bottom enclosing structure. The casing structure has an accommodating space for receiving the winding assembly. The filling body is filled in the accommodating space for surrounding the winding assembly. The bottom enclosing structure is disposed on a bottom portion of the casing structure for carrying the winding assembly and enclosing the accommodating space. The bottom enclosing structure is surrounded by the casing structure and tightly connected to the filling body.
Abstract:
The instant disclosure relates to a manufacturing method of capacitor cathode foil structure, comprising the following steps. The first step is providing a base foil, subsequently inserting the foil into a reactor. The next step is executing a heating process for heat the base foil to a temperature region of 400° C. to 1000° C. The next step is directing a carbon containing precursor gas into the reactor. The last step is executing a cooling process for cooling the base foil to a temperature below 100° C. to deposit a graphene-based layer on one surface of the base foil, wherein the graphene-based layer is consisted of a plurality of graphene-based thin films in stacked arrangement.
Abstract:
The instant disclosure relates to an improved method for the production of solid electrolytic capacitor, comprising the following steps. First, provide an insulating substrate. Next, form a plurality of conducting gels including aluminum powder on the insulating substrate. Thirdly, execute a high- temperature sintering process to metalize the conducting gels to form a plurality of aluminum plates. Next, form a dielectric layer on every aluminum plate. Then form an isolation layer on every dielectric layer to define an anodic region and a cathodic region. Lastly, form a conductive layer on the dielectric layer of every cathodic region, thus defining a solid electrolytic capacitor unit.
Abstract:
A laterally placed capacitor package assembly and an assembly method thereof are provided. The laterally placed capacitor package assembly includes a wound capacitor package structure and a capacitor supporting structure. The wound capacitor package structure includes a wound assembly, a conductive assembly and a package assembly. The conductive assembly includes a first conductive pin and a second conductive pin. The capacitor supporting structure includes a supporting portion configured to support the wound capacitor package structure and a plurality of positioning portions extending outward from the supporting portion. When the laterally placed capacitor package assembly is configured to be laterally disposed on a circuit substrate, a first exposed portion of the first conductive pin and a second exposed portion of the second conductive pin can be laterally and electrically connected to the circuit substrate without bending.