Abstract:
A method performed by a portable media player device. The method receives a microphone signal that includes audio content output by an audio playback device via a loudspeaker. The method determines identification information regarding the audio content, wherein the identification information is determined through an acoustic signal analysis of the microphone signal. In response to determining that the audio playback device has ceased outputting the audio content, the method retrieves from local memory of the portable media player device or a remote device with which the portable media player device is communicatively coupled, an audio signal that corresponds to the audio content and drives a speaker that is not part of the audio playback device using the audio signal to continue outputting the audio content and any additional audio content related to the audio content.
Abstract:
Audio processing with audio transparency can include receiving a user content audio signal and receiving a microphone signal. The microphone signal can contain sensed sound of a user environment. Strength of the sensed sound can be increased based on strength of the user content audio signal, to reduce a masking of the sensed sound during playback. The sensed sound and the user content audio signal can be combined in a composite output audio signal used to drive a speaker. Other aspects are also described and claimed.
Abstract:
In various implementations, a method comprises: identifying a plurality of data items, each of the plurality of data items having at least a first metadata field or a second metadata field; displaying a volumetric environment including a first plurality of SR objects corresponding to a first plurality of data items among the plurality of data items, wherein the first plurality of data items includes the first metadata field with first metadata field values; detecting a first user input indicative of the second metadata field; and in response to detecting the first user input, replacing the first plurality of SR objects within the volumetric environment with a second plurality of SR objects corresponding to a second plurality of data items among the plurality of data items, wherein each of the second plurality of data items includes the second metadata field with second metadata field values.
Abstract:
Spatializing audio can include determining a draw-away curve of an audio signal and modifying the draw-away curve based on a strength of the audio signal. The strength can be determined prior to spatializing the audio signal. The audio signal can be attenuated or modified based on the modified draw-away curve. The attenuated or modified audio signal can be spatialized. Other aspects are described and claimed.
Abstract:
A method for reducing gain for audio amplification by an audio system having a tweeter channel, an optional midrange channel, and a woofer channel. Gain of the woofer channel is reduced simultaneously with reducing gain of the tweeter channel, both responsive to detecting the same instance of overloading (overdriving) the woofer channel. Other aspects are also described and claimed.
Abstract:
A process for reproducing sound using a loudspeaker array that is housed in a loudspeaker cabinet includes the selection of a number of sound rendering modes and changing the selected sound rendering mode based on changes in one or both of sensor data and a user interface selection. The sound rendering modes include a number of mid-side modes and at least one direct-ambient mode. Other embodiments are also described and claimed.
Abstract:
A portable electronic device includes at least four speakers spaced apart from one another. An audio processor attenuates a high frequency portion of a left audio signal and a right audio signal to provide a processed left audio signal and a processed right audio signal. An audio router directs the left audio signal to only a first speaker, the right audio signal to only a second speaker, the processed left audio signal to a third speaker, and the processed right audio signal to a fourth speaker. The audio signals may be directed according to the orientation of the device. The cutoff frequency for attenuating the high frequency portion of the audio signals may be responsive to the orientation of the device. In other embodiments, the high frequency portion of the audio signals may be decorrelated to produce signals with high frequency portions for all speakers.
Abstract:
A process for reproducing sound using a loudspeaker array that is housed in a loudspeaker cabinet includes the selection of a number of sound rendering modes and changing the selected sound rendering mode based on changes in one or both of sensor data and a user interface selection. The sound rendering modes include a number of mid-side modes and at least one direct-ambient mode. Other embodiments are also described and claimed.
Abstract:
A portable electronic device includes at least four speakers spaced apart from one another. An audio processor attenuates a high frequency portion of a left audio signal and a right audio signal to provide a processed left audio signal and a processed right audio signal. An audio router directs the left audio signal to only a first speaker, the right audio signal to only a second speaker, the processed left audio signal to a third speaker, and the processed right audio signal to a fourth speaker. The audio signals may be directed according to the orientation of the device. The cutoff frequency for attenuating the high frequency portion of the audio signals may be responsive to the orientation of the device. In other embodiments, the high frequency portion of the audio signals may be decorrelated to produce signals with high frequency portions for all speakers.
Abstract:
A system and method for driving a loudspeaker array across directivities and frequencies to maintain timbre constancy in a listening area is described. In one embodiment, a frequency independent room constant describing the listening area is determined using the directivity index of a first beam pattern, the direct-to-reverberant ratio DR at the listener's location in the listening area, and an estimated reverberation time T60 for the listening area at a designated frequency. On the basis of this room constant, an offset may be generated for a second beam pattern. The offset describes the decibel difference between first and second beam patterns to achieve constant timbre and may be used to adjust the second beam pattern at multiple frequencies. Maintaining constant timbre improves audio quality regardless of the characteristics of the listening area and the beam patterns used to represent sound program content. Other embodiments are also described.