摘要:
A system and method for controlling the navigation of surface based vehicle uses a route that is obtained by manually driving the vehicle over the route to collect data defining the absolute position of the vehicle at various positions along the route. The collected data is smoothed to provide a consistent route to be followed. The smoothed data is subsequently used to automatically guide the vehicle over the route.
摘要:
A system (400) for positioning and navigating an autonomous vehicle (310) allows the vehicle (310) to travel between locations. Position information (432) is derived from global positioning system satellites (200, 202, 204, and 206) or other sources (624) when the satellites (200, 202, 204, and 206) are not in the view of the vehicle (310). Navigation of the vehicle (310) is obtained using the position information (432), route information (414), obstacle detection and avoidance data (416), and on board vehicle data (908 and 910).
摘要:
A system for generating a path allows a vehicle to traverse a predetermined route. The system stores route data for the predetermined route. The route data identifies a series of contiguous path segments that form the predetermined route. The route data also identifies a series of nodes located at the beginning and the end of the predetermined route and between adjacent path segments. Each path segment represents a series of postures along the predetermined route. Each posture identifies a position, a heading, and a curvature for the vehicle at a particular point along the predetermined route. The system stores the path segments and nodes as compressed path data. In one embodiment, the compressed path data is a function that is continuous in posture, i.e., continuous in position, heading and curvature. The system retrieves the compressed path data and generates a series of postures from the retrieved compressed path data to allow the vehicle to traverse the predetermined route.
摘要:
A system (400) for positioning and navigating an autonomous vehicle (310) allows the vehicle (310) to travel between locations. Position information (432) is derived from global positioning system satellites (200, 202, 204, and 206) or other sources (624) when the satellites (200, 202, 204, and 206) are not in the view of the vehicle (310). Navigation of the vehicle (310) is obtained using the position information (432), route information (414), obstacle detection and avoidance data (416), and on board vehicle data (908 and 910).
摘要:
An apparatus and method for navigating a vehicle along a predetermined route use route data and path data to define the predetermined route. The route data represents one or more contiguous path segments between adjacent nodes along the predetermined route. The path data includes postures of the vehicle along each of the path segments. The postures define the desired position, heading, curvature and speed of vehicle at various locations along the path segments. The apparatus and method use the posture information to generate and track a path thereby allowing the vehicle to navigate along the predetermined route.
摘要:
A system (400) for positioning and navigating an autonomous vehicle (310) allows the vehicle (310) to travel between locations. Position information (432) is derived from global positioning system satellites (200, 202, 204, and 206) or other sources (624) when the satellites (200, 202, 204, and 206) are not in the view of the vehicle (310). Navigation of the vehicle (310) is obtained using the position information (432), route information (414), obstacle detection and avoidance data (416), and on board vehicle data (908 and 910).
摘要:
An apparatus and method for controlling a surface-based vehicle provides three operational modes: a manual operation, a tele-operation, and an autonomous operation. In manual operation, an operator directly manipulates vehicle controls on the vehicle. In tele-operation, the operator controls the vehicle from a remote position. In autonomous operation, the vehicle controls itself based on its position and a predetermined path. The apparatus and method of the present invention provides an orderly transition between manual operation, tele-operation, and autonomous operation of the vehicle.
摘要:
A system and method for controlling an autonomously navigated vehicle uses a vehicle manager to control vehicle subsystems and to respond to commands from either a vehicle navigation system or a remote control panel. The vehicle manager controls vehicle subsystems including a speed control subsystem, a steering control subsystem, an auxiliary control subsystem, and a monitor subsystem. The speed control subsystem controls the speed of the vehicle in response to a speed command from the vehicle manager. The steering control subsystem controls the steering angle of the vehicle in response to a steering command from the vehicle manager. The auxiliary control subsystem controls auxiliary functions of the vehicle in response to an auxiliary command from the vehicle manager. The monitor subsystem monitors the status of each of the other subsystems and provides the status to the vehicle manager.
摘要:
A system (400) for positioning and navigating an autonomous vehicle (310) allows the vehicle (310) to travel between locations. Position information (432) is derived from global positioning system satellites (200, 202, 204, and 206) or other sources (624) when the satellites (200, 202, 204, and 206) are not in the view of the vehicle (310). Navigation of the vehicle (310) is obtained using the position information (432), route information (414), obstacle detection and avoidance data (416), and on board vehicle data (908 and 910).
摘要:
Systems and methods allow for the accurate determination of the terrestrial position of an autonomous vehicle in real time. A first position estimate of the vehicle 102 is derived from satellites of a global positioning system and/or a pseudolite(s). The pseudolite(s) may be used exclusively when the satellites are not in the view of the vehicle. A second position estimate is derived from an inertial reference unit and/or a vehicle odometer. The first and second position estimates are combined and filtered using novel techniques to derive a more accurate third position estimate of the vehicle's position. Accordingly, accurate autonomous navigation of the vehicle can be effectuated using the third position estimate.