Abstract:
According to embodiments of the present invention, a writing circuit for a magnetoresistive memory cell is provided. The writing circuit includes a first connecting terminal configured to provide a first electrical signal to switch a variable magnetization orientation of the free magnetic layer from a first magnetization orientation to a second magnetization orientation; a second connecting terminal configured to provide a second electrical signal to switch the magnetization orientation from the second magnetization orientation to the first magnetization orientation; and a sourcing switch configured to provide for a write operation a connection of the first or second connecting terminal to a node coupleable to the magnetoresistive memory cell. The first and second electrical signals have different amplitudes, and the first and second electrical signals are of the same polarity. Further embodiments relate to a memory cell arrangement and a method of writing into a target magnetoresistive memory cell.
Abstract:
A writing circuit for a magnetoresistive memory cell is provided. The writing circuit includes a first electrical connecting terminal, a second electrical connecting terminal, a third electrical connecting terminal, a fourth electrical connecting terminal, a first reference potential terminal, a second reference potential terminal, a first switch configured to couple one of the first electrical connecting terminal, the second electrical connecting terminal, the third electrical connecting terminal and the fourth electrical connecting terminal to the magnetoresistive memory cell, and a second switch configured to couple the first reference potential terminal to the magnetoresistive memory cell if the first electrical connecting terminal or the second electrical connecting terminal is coupled to the magnetoresistive memory cell, and to couple the second reference potential terminal to the magnetoresistive memory cell if the third electrical connecting terminal or the fourth electrical connecting terminal is coupled to the magnetoresistive memory cell.
Abstract:
According to embodiments of the present invention, a magnetoresistive device is provided. The magnetoresistive device includes at least two ferromagnetic soft layers, wherein the at least two ferromagnetic soft layers have different ranges of magnetization switching frequencies. Further embodiments provide a magnetoresistive device including at least two oscillating ferromagnetic structures, wherein ranges of operating current amplitudes at which oscillations are induced for the at least two oscillating ferromagnetic structures are different. According to further embodiments of the present invention, writing methods for the magnetoresistive devices are provided.