Abstract:
The present disclosure relates to a method for operating a first base station (101) in a communication system (100), the first base station (101) using a first communication link (111) for exchanging data to interoperate with a first core network (107), the communication system (100) comprising a second base station (105). The method comprises detecting a malfunction of the first communication link (111); and establishing a second communication link (201) from the first base station (101) to a selected core network of the first and a second core networks of the communication system (100) via the second base station (105), with the second base station (105) exchanging on behalf of the first base station (101) data with the selected core network, whereby the first base station (101) interoperates with the selected core network through the second base station (105).
Abstract:
Embodiments relate to apparatuses, methods and computer programs for an operator specific scheduler, a common scheduler and an adaptation module. An adaptation module apparatus maps control signaling resources and data signaling resources of a mobile communication system to universal control and data resources. A common scheduler apparatus determines information on an availability of a subset of the universal control resources based on an assignment rule of an operator and based on the information on the availability of the plurality of universal control resources. An operator specific scheduler 10 allocates a universal control resource and a universal data resource to a user 12 associated with the operator based on the information on the availability of the universal control resources and the information on the availability of the universal data resources.
Abstract:
The invention concerns a method for scheduling of radio resources to user terminals (UE11-UE24) of different network operators using a scheduling unit, wherein the scheduling unit determines weight parameters for the user terminals (UE11-UE24) of the different network operators for scheduling of the radio resources based on a predefined distribution of radio resources among the different network operators (si) and at least one data throughput per user terminal in a time interval (Tij), and the scheduling unit schedules the radio resources to the user terminals (UE11-UE24) of the different network operators based on said weight parameters, and a base station therefor.
Abstract:
Embodiments relate to apparatuses, methods, and computer programs for base station transceivers. Embodiments provide an apparatus (10) for a base station transceiver (100) for a mobile communication system (400). The mobile communication system (400) comprises a mobile transceiver (300), which is to be associated to a neighbor base station transceiver (200). The apparatus (10) comprises means for associating (12) the mobile transceiver (300) with the neighbor base station transceiver (200) and means for scheduling (14) a radio resource from a plurality of radio resources for communicating with another mobile transceiver and for determining a subset of radio resources from the plurality of radio resources for enabling a communication between the neighbor base station transceiver (200) and the mobile transceiver (300) prior to associating the mobile transceiver (300) with the neighbor base station transceiver (200). Embodiments provide another apparatus (20) for a base station transceiver (200). The apparatus (20) comprises means for receiving (22) information on a subset of radio resources from a plurality of radio resources from the neighbor base station transceiver (100) and means for scheduling (24) a radio resource from the subset of the plurality of radio resources for communicating with the mobile transceiver (300).
Abstract:
Method and device for allocating resources in a radio communication system providing resources for uplink transmission and/or for downlink transmission for a plurality of operators providing a service to a user equipment via the radio communication system, wherein the device includes a processor, memory and a transceiver, the processor being adapted to select a time division duplex configuration having an allocation of uplink transmission time and/or an allocation of downlink transmission time based on information regarding a sharing characteristic for the radio resources defined by a service level agreement between operators sharing the radio resources.
Abstract:
A method is provided of replacing a first drone base station with a second drone base station, the first drone base station, the method comprising: sending by the first drone base station first pilot signals indicating a cell identifier; receiving by the first drone base station information that the second drone base station is in the vicinity of the first drone base station; sending by the second drone base station second pilot signals which indicate the same cell identifier as the first drone base station; receiving by the first drone base station from the second drone base station an indication to cease to send first pilot signals; and dependent upon receiving by the first drone base station from the second drone base station the indication to cease to send first pilot signals, ceasing by the first drone base station the sending of first pilot signals.
Abstract:
A method is provided of replacing a first drone base station with a second drone base station, the first drone base station, the method comprising: sending by the first drone base station first pilot signals indicating a cell identifier; receiving by the first drone base station information that the second drone base station is in the vicinity of the first drone base station; sending by the second drone base station second pilot signals which indicate the same cell identifier as the first drone base station; receiving by the first drone base station from the second drone base station an indication to cease to send first pilot signals;and dependent upon receiving by the first drone base station from the second drone base station the indication to cease to send first pilot signals, ceasing by the first drone base station the sending of first pilot signals.
Abstract:
The embodiments of the invention relate to a transmitter method for multiple antenna systems. The transmitter method contains the step of operating at least one antenna array in a first operation mode by transmitting first transmit signals (TS1-1, TS1-a, TS1-A) from a first number of antenna elements (AEG1) with a first transmit power and the step of operating the at least one antenna array in at least one second operation mode by transmitting at least second transmit signals (TS2-1, TS2-b, TS2-B, TS3-1, TS3-C, TS3-C) from at least one second number of antenna elements (AEG2, AEG3) smaller than the first number of antenna elements with at least one second transmit power larger than the first transmit power. The embodiments of the invention further relate to a transmitter apparatus for multiple antenna systems. The transmitter apparatus contains means for operating at least one antenna array in a first operation mode by transmitting first transmit signals (TS1-1, TS1-a, TS1-A) from a first number of antenna elements (SUB-G1) with a first transmit power and for operating the at least one antenna array in at least one second operation mode by transmitting second transmit signals (TS2-1, TS2-b, TS2-B, TS3-1, TS3-c, TS3-C) from at least one second number of antenna elements (SUB-G2, SUB-G3) smaller than the first number of antenna elements with at least one second transmit power larger than the first transmit power. The embodiments of the invention even further relate to a network node, which contains the transmitter apparatus.
Abstract:
Embodiments relate to an apparatus, a base station transceiver, a method, and a computer program for assigning a radio resource. An apparatus 10 for a mobile communication system is operable to assign a radio resource from a plurality of radio resources to enable communication of information between a mobile transceiver 200 and a base station transceiver 100. The apparatus 10 comprises a scheduler 12 for determining the radio resource based on information on a transmission condition between the mobile transceiver 200 and the base station transceiver 100, and based on a first allocation rule of a first operator and based on a second allocation rule of a second operator.
Abstract:
The invention relates to a method for joint processing of uplink data (g(n), s(n)) transmitted from at least one user equipment (UE1, UE2) to a plurality of coordinated reception points (BSA, BSB) of a wireless communication system (1), the method comprising: estimating and preferably compensating for individual propagation delays of the uplink data (g(n), s(n)) transmitted from one of the user equipments (UE1, UE2) to the coordinated reception points (BSA, BSB), and compensating a timing difference between a propagation delay of a coordinated reception point (BSA, BSB) which serves the user equipment (UE1, UE2) and at least one propagation delay of at least one coordinated reception point (BSB, BSA) which does not serve the user equipment (UE1, UE2) for performing the joint processing of the uplink data (g(n), s(n)), wherein the step of compensating the timing difference comprises modifying a channel matrix (H) associated with uplink channels from the at least one user equipment (UE1, UE2) to the coordinated reception points (BSA, BSB). The invention also relates to a processing arrangement (BSA, BSB, 2) adapted for performing the method.