Abstract:
Systems, methods, and apparatuses for magnetic field sensors with self-test include a detection circuit to detect speed and direction of a target. One or more circuits to test accuracy of the detected speed and direction may be included. One or more circuits to test accuracy of an oscillator may also be included. One or more circuits to test the accuracy of an analog-to-digital converter may also be included. Additionally, one or more IDDQ and/or built-in-self test (BIST) circuits may be included.
Abstract:
A sensor includes a detector configured to sense a parameter, at least one test circuit configured to detect a respective fault condition of the sensor and generate a fault signal in response to detecting the fault condition, a checker configured to test the at least one test circuit to determine the operational status of the at least one test circuit, and an output signal generator, coupled to receive the sensed parameter, the fault signal, and the operational status of the at least one test circuit. The output signal generator is configured to generate an output signal of the sensor to communicate the sensed parameter and the operational status of the at least one test circuit.
Abstract:
An electronic circuit includes a driver circuit having an output terminal that can be coupled to a load to drive the load. A control circuit is coupled to the driver circuit for controlling the driver circuit. A transistor is coupled in series between the driver circuit and the output terminal. The transistor has a first terminal coupled to the driver circuit and a second terminal coupled to the output terminal. A biasing circuit is coupled to a gate terminal of the transistor and configured to provide a constant voltage to the gate terminal to bias the transistor to a conducting state to reduce the susceptibility of the electronic circuit to electromagnetic interference. The biasing circuit includes a voltage regulator, a Zener diode, and a capacitor. The Zener diode and capacitor are coupled to the gate terminal and a reference terminal.
Abstract:
An electronic circuit includes semiconductor substrate having a first doping type and a reference terminal coupled to the semiconductor substrate. A tub area having a second doping type is formed in the semiconductor substrate. A well area having the first doping type is formed within the tub area. A driver circuit comprising a transistor is formed within the well area and has an output terminal. A control circuit is coupled to the driver circuit for controlling the driver circuit. A second transistor is within the well area and coupled in series between the driver circuit and the output terminal, the second transistor having a first terminal coupled to the driver circuit and a second terminal coupled to the output terminal. A biasing circuit is coupled to a gate terminal of the second transistor and configured to bias the transistor to a conducting state.
Abstract:
Electronic circuits used in magnetic field sensors use transistors for passing a current through the transistors and also through a magnetoresistance element.
Abstract:
Electronic circuits used in magnetic field sensors use transistors for passing a current through the transistors and also through a magnetoresistance element.
Abstract:
Systems, methods, and apparatuses for magnetic field sensors with self-test include a detection circuit to detect speed and direction of a target. One or more circuits to test accuracy of the detected speed and direction may be included. One or more circuits to test accuracy of an oscillator may also be included. One or more circuits to test the accuracy of an analog-to-digital converter may also be included. Additionally, one or more IDDQ and/or built-in-self test (BIST) circuits may be included.
Abstract:
A motion sensor has a vibration processor to set a flag in response to a plurality of test results provided by a plurality of tests being indicative of a passing condition. A corresponding method and computer-readable storage medium can be used by the motion sensor.
Abstract:
A motion sensor has an output protocol processor configured to provide a validated output signal after a determined time period, wherein the determined time period is extended if a vibration is detected.
Abstract:
A sensor includes a detector configured to sense a parameter, at least one test circuit configured to detect a respective fault condition of the sensor and generate a fault signal in response to detecting the fault condition, a checker configured to test the at least one test circuit to determine the operational status of the at least one test circuit, and an output signal generator, coupled to receive the sensed parameter, the fault signal, and the operational status of the at least one test circuit. The output signal generator is configured to generate an output signal of the sensor to communicate the sensed parameter and the operational status of the at least one test circuit.