Abstract:
Systems and methods for measuring tobacco for packaging in pouches are disclosed. A system includes a hopper structured and arranged to hold a granular material in a hopper cavity. The system also includes a measuring system including a measuring cavity and a tube that is slidable in the hopper cavity between a first position unaligned with the measuring cavity and a second position over and aligned with the measuring cavity. The measuring system is configured to continuously communicate a vacuum to the measuring cavity. The measuring system is configured to move a portion of the granular material from the hopper cavity to the measuring cavity when the tube is in the first position. The measuring system is configured to move the portion of the granular material from the measuring cavity to a pouch making machine using pressurized gas that overcomes the vacuum when the tube is in the second position.
Abstract:
Articles of manufacture, products, and packaging methods are provided that include collapsible container. Collapsible containers provided herein can define an open interior space with a peripheral side wall having a top edge and a bottom edge and a bottom wall attached to the bottom edge of the side wall. The bottom wall can include a displaceable portion in an expanded configuration that extends below the bottom edge of the side wall and adapted to being displaced to a collapsed configuration that extends above the bottom edge of the side wall. Product constituents (e.g., pouches of smokeless tobacco) can be placed in a collapsible container provided herein while the collapsible container is in its expanded configuration. After installing a lid onto a collapsible container to enclose the product within the collapsible container, the container can be collapsed to its collapsed configuration.
Abstract:
Apparatuses and methods for tamping the contents of a container are disclosed. An embodiment of an apparatus includes a tamp head for tamping the contents of the container; and a container support assembly structured and arranged to temporarily support the bottom surface of the container during tamping, the container support assembly comprising a support element having a protrusion extending upward from a substantially flat and horizontal upper surface, wherein the protrusion is sized and shaped to correspond to the size and shape of the bottom surface of the container.
Abstract:
Apparatuses and methods for tamping the contents of a container are disclosed. An embodiment of an apparatus includes a tamp head for tamping the contents of the container; and a container support assembly structured and arranged to temporarily support the bottom surface of the container during tamping, the container support assembly comprising a support element having a protrusion extending upward from a substantially flat and horizontal upper surface, wherein the protrusion is sized and shaped to correspond to the size and shape of the bottom surface of the container.
Abstract:
A composite lid of a cylindrical container includes an outer metal lid having an integral top wall and sidewall and an inner plastic lid having a top wall and sidewall fitted inside the outer metal lid such that a free end of the sidewall of the inner plastic lid extends beyond a free end of the sidewall of the outer metal lid. The composite lid can be fitted on a base having an integral bottom wall and sidewall such that the sidewall of the inner plastic lid frictionally engages the sidewall of the base. The outer metal lid can be formed by stamping sheet metal, the inner plastic lid can be formed by molding a polymer material and the base can be formed by molding a polymer material. The outer metal lid can be adhesively bonded or mechanically fitted to the inner plastic lid.
Abstract:
Systems and methods for manufacturing and inserting a pre-determined number of material-filled pouches into containers are disclosed. A system includes a pouch providing system comprising a plurality of lanes, wherein each one of the plurality of lanes includes a pouch making machine and a hold-back structure. The system also includes a conveyor system structured and arranged to move a plurality of containers into alignment with the plurality of lanes. The system further includes a controller structured and arranged to control the hold-back structure in each one of the plurality of lanes such that the pre-determined pouches are inserted into the plurality of containers when the plurality of containers are aligned with the plurality of lanes.
Abstract:
The present disclosure provides an apparatus for forming a stream of individual packets, comprising a folder arranged to form a tubular web structure, a feeder arranged to feed the formed tubular web structure to a nip; a first rotor comprising a first sealing jaw and a knife, a second rotor comprising a second sealing jaw and an anvil, the sealing jaws, the knife and anvil rotating into opposing relation at the nip so as to form a severed, completed packet beyond the nip. The apparatus includes an open ended packet catcher adjacent the first and second rotors, which is arranged to catch the severed, completed packets beyond the nip whereby a stream of packets is established. The packet catcher includes a stripper disposed in a proximal location to at least one of the anvil, the knife and the sealing jaws when the anvil, the knife and/or the sealing jaws are rotated beyond the nip, whereby, should a completed packet stick to any of the anvil, the knife and/or the sealing jaws, the stripper is operative to free the stuck packet from the anvil, the knife and/or the sealing jaw. The present disclosure provides a fin sealer and method to seal a radially outwardly directed fin of a tubular web structure by directing the fin through a nip between a first and a second fin sealing rollers while communicating heat to the fin through at least one of the fin sealing rollers, the fin sealer being further arranged to maintain a nominal face-to-face relation between an outer annulus of the first fin sealing roller and an outer annulus of the second fin sealing roller with a flexible connection between a hub element of the second fin sealing roller with the outer annulus of the second fin sealing roller. A cooling system is also provided, which is operative upon one of the rotors of a cut and seal station.
Abstract:
Systems and methods for measuring tobacco for packaging in pouches are disclosed. A system includes a hopper structured and arranged to hold a granular material in a hopper cavity. The system also includes a measuring system including a measuring cavity and a tube that is slidable in the hopper cavity between a first position unaligned with the measuring cavity and a second position over and aligned with the measuring cavity. The measuring system is configured to continuously communicate a vacuum to the measuring cavity. The measuring system is configured to move a portion of the granular material from the hopper cavity to the measuring cavity when the tube is in the first position. The measuring system is configured to move the portion of the granular material from the measuring cavity to a pouch making machine using pressurized gas that overcomes the vacuum when the tube is in the second position.
Abstract:
In an example embodiment, an apparatus for making pouch products includes a conveyor system. The conveyor system includes a first receiving location along a path of the conveyor system, and a dosing location along the path of the conveyor system. The apparatus also includes a first material dispensing station configured to transfer a first material to the first receiving location. The first material includes a first elastic layer and a first support layer. The first material dispensing station includes a dispenser roller configured to hold a roll of the first material, a plurality of rollers configured to convey the first material from the dispenser roller to the first receiving location, and a stripper plate configured remove at least a portion of the first support layer from a portion of the first elastic layer.
Abstract:
An apparatus includes a fixed assembly and a reciprocating assembly. The fixed assembly includes a hopper, a first gas manifold, and a dispensing chamber, and the reciprocating assembly includes a channel assembly defining a channel conduit, a shield plate vertically aligned therewith, and a second gas manifold. The reciprocating assembly may move, in relation to the fixed assembly, to a first position to enable the channel conduit to be filled with bulk compressible material from the hopper, a second position to enable compressible material to be pushed from the channel conduit to the dispensing conduit and to be compressed in the dispensing chamber according to a first gas directed through the channel conduit by the first gas manifold, and a third position to enable the compressed material to be pushed out of the dispensing conduit according to a second gas directed through the dispensing conduit by the second gas manifold.