摘要:
An implantable coronary perfusion monitoring device for in-vivo determination of a coronary perfusion index (CPI) indicative of the coronary perfusion of a heart has a time measurement unit to determine a blood pressure reflection wave measure t indicating the timely position in the heart cycle of the maximum of a reflected blood pressure wave and in a time period starting at a preset point of time in systole and ending at a local maximum of blood pressure following aortic valve closure and, a diastolic peak pressure measurement unit adapted to determine a diastolic peak blood pressure measure DPP related to diastolic aortic peak pressure and a systolic arterial pressure measurement unit adapted to determine a systolic arterial blood pressure measure SAP related to systolic arterial pressure, and a coronary perfusion index calculating unit adapted to determine said coronary perfusion index CPI as (t·DPP)/SAP.
摘要:
An implantable coronary perfusion monitoring device for in-vivo determination of a coronary perfusion index (CPI) indicative of the coronary perfusion of a heart has a time measurement unit to determine a blood pressure reflection wave measure t indicating the timely position in the heart cycle of the maximum of a reflected blood pressure wave and in a time period starting at a preset point of time in systole and ending at a local maximum of blood pressure following aortic valve closure and, a diastolic peak pressure measurement unit adapted to determine a diastolic peak blood pressure measure DPP related to diastolic aortic peak pressure and a systolic arterial pressure measurement unit adapted to determine a systolic arterial blood pressure measure SAP related to systolic arterial pressure, and a coronary perfusion index calculating unit adapted to determine said coronary perfusion index CPI as (t·DPP)/SAP.
摘要:
An implantable heart analyzing device has a housing and a control circuit located within said housing. The control circuit generates an output signal adapted to actuate an activator, which is able to make a wall of the heart deflect or vibrate. The control circuit also communicates with a sensor, which can be identical with the activator, with which the movement of the heart wall can be sensed. The control circuit executes a procedure that involves the generation of an output signal and sensing a corresponding sensor signal, and to be able to derive information concerning the tension of the heart wall. An implantable heart analyzing includes the aforementioned heart analyzing device, as well as the activator and the sensor. The heart analyzing device and the system implement a method that results in generation of the aforementioned information concerning the tension of the heart wall.
摘要:
An implantable medical device has an oxygen sensor adapted to measure the level of oxygen in oxygenized blood, and to generate an oxygen measurement signal in dependence of the level of oxygen. The oxygen sensor is adapted to perform measurements inside the heart, of blood entering the left atrium of a patient's heart. The obtained oxygen measurement signal is compared to a predetermined threshold level and an indication signal is generated in dependence of the comparison. The, indication signal is indicative of the lung functionality of the patient.
摘要:
An implantable medical system for detecting incipient edema has an implantable medical lead including an optical sensor having a light source and a light detector. The medical system further has an edema detection circuit that activates the light source to emit light, the light being directed into lung tissue of a patient and that obtains a light intensity value corresponding to an intensity of light received by the light detector, and that evaluates the light intensity value to detect a consistency with incipient edema.
摘要:
An implantable medical system for detecting incipient edema has an implantable medical lead including an optical sensor having a light source and a light detector. The medical system further has an edema detection circuit that activates the light source to emit light, the light being directed into lung tissue of a patient and that obtains a light intensity value corresponding to an intensity of light received by the light detector, and that evaluates the light intensity value to detect a consistency with incipient edema.
摘要:
An implantable heart stimulator has an impedance measurement a cardiogenic impedance waveform using an impedance configuration arranged to measure myocardial contractility of the heart. The heart stimulator further has a calculating unit that calculates an estimate value being related to at least two impedance values of the waveform, or of an average waveform of several consecutive waveforms, during a predetermined time period of the waveform, or average waveform, the calculated estimate value being an estimate of the left ventricular (LV) systolic pressure.
摘要:
An implantable medical device has an impedance processor that determines impedance data reflective of the transvalvular impedance of a heart valve of a heart during a heart cycle. The determined impedance data are processed by a representation processor that estimates diastolic and systolic transvalvular impedance representations. A condition processor determines the presence of any heart valve malfunction, such as valve regurgitation andor stenosis, of the heart valve based on the estimated diastolic and systolic transvalvular impedance representations.
摘要:
An implantable medical device has an impedance processor that determines impedance data reflective of the transvalvular impedance of a heart valve of a heart during a heart cycle. The determined impedance data are processed by a representation processor that estimates diastolic and systolic transvalvular impedance representations. A condition processor determines the presence of any heart valve malfunction, such as valve regurgitation and/or stenosis, of the heart valve based on the estimated diastolic and systolic transvalvular impedance representations.
摘要:
A late potential detecting system has an implantable medical device connected to at least one cardiac lead having implantable electrodes positioned at different sites of a ventricle myocardium. A sampling unit of the implantable medical device records electrogram samples for the different implantable electrodes to get different sample sets. The electrogram samples of the sample sets are time synchronized and magnitude potential representations of the potential data of the electrogram samples are determined. The magnitude potential representations of the time synchronized electrogram samples are then co-processed and used for determining a parameter that is indicative of any late potentials of the monitored ventricle.