Abstract:
A method for ascertaining measured values in a cyclically controlled system, the cyclic control having control time periods in which the system is controlled, and no-control time periods in which the system is not controlled, having the following operations of determining first integration time periods as a function of the cyclic control, the first integration time periods being situated within at least one of the control time periods, and/or determining second integration time periods as a function of the cyclic control, the second integration time period being situated within at least one of the no-control time periods; detecting one of the measured variables of the system dependent on the control; ascertaining summation and/or integration values by summation and/or integration of the measured variable during the first and/or second integration time periods; ascertaining the measured value for at least one of the control time periods and/or no-control time periods on the basis of time data of the first and/or second integration time periods and of the ascertained summation and/or integration values.
Abstract:
The invention provides a method and a device for controlling an electric motor using pulse-width modulated control signals. Control pulses having a setpoint duty factor and temporally varying pulse widths and pulse spacing are generated in the process, the temporally varying pulse widths and pulse spacing being selected as a function of a load and/or thermal loading of the electric motor and/or its control device.
Abstract:
An electronic component has an integrated protective device which responds in the event of a thermal overload and interrupts a current flow through the component. The protective device has an electrical terminal which may be brought under spring pretension by intrinsic resilience and assumes a mounting position in the pretensioned state and a current interrupting position in the untensioned state.
Abstract:
A method for ascertaining measured values in a cyclically controlled system, the cyclic control having control time periods in which the system is controlled, and no-control time periods in which the system is not controlled, having the following operations of determining first integration time periods as a function of the cyclic control, the first integration time periods being situated within at least one of the control time periods, and/or determining second integration time periods as a function of the cyclic control, the second integration time period being situated within at least one of the no-control time periods; detecting one of the measured variables of the system dependent on the control; ascertaining summation and/or integration values by summation and/or integration of the measured variable during the first and/or second integration time periods; ascertaining the measured value for at least one of the control time periods and/or no-control time periods on the basis of time data of the first and/or second integration time periods and of the ascertained summation and/or integration values.
Abstract:
A device and a method are provided for determining the after-run voltage of a direct current motor which is operated via cycled control. In normal operation the direct current motor is controlled via PWM control and a first specifiable pulse/no-pulse ratio. An evaluation unit is provided for determining an after-run voltage variable which is representative of the after-run voltage of the motor. Furthermore, for determining the after-run voltage variable the direct current motor is controlled via a specifiable, variable second pulse/no-pulse ratio.
Abstract:
A device and a method are provided for determining the after-run voltage of a direct current motor which is operated via cycled control. In normal operation the direct current motor is controlled via PWM control and a first specifiable pulse/no-pulse ratio. An evaluation unit is provided for determining an after-run voltage variable which is representative of the after-run voltage of the motor. Furthermore, for determining the after-run voltage variable the direct current motor is controlled via a specifiable, variable second pulse/no-pulse ratio.
Abstract:
An electronic component has an integrated protective device which responds in the event of a thermal overload and interrupts a current flow through the component. The protective device has an electrical terminal which may be brought under spring pretension by intrinsic resilience and assumes a mounting position in the pretensioned state and a current interrupting position in the untensioned state.
Abstract:
A method and a circuit system for monitoring the electrical properties of a load circuit controlled in a clocked manner, the load circuit having at least one ohmic component and at least one inductive component, having the following steps: establishing at least one first control signal and one second control signal, the control signals being established in such a way that, in the case of activation of the load circuit using the first control signal, the inductive behavior of the load circuit predominates and, in the case of activation of the load circuit using the second control signal, the ohmic behavior of the load circuit predominates, acquiring at least one measured variable, which is a function of the control signal and the ohmic and/or inductive components, in the case of activation of the load circuit using the first control signal and in the case of activation of the load circuit using the second control signal, ascertaining the deviations of the measured variables from measured variables which are expected on the basis of the nominal values of the inductive and ohmic components, classifying the state of the load circuit on the basis of the ascertained deviations.
Abstract:
A method and a circuit system for monitoring the electrical properties of a load circuit controlled in a clocked manner, the load circuit having at least one ohmic component and at least one inductive component, having the following steps: establishing at least one first control signal and one second control signal, the control signals being established in such a way that, in the case of activation of the load circuit using the first control signal, the inductive behavior of the load circuit predominates and, in the case of activation of the load circuit using the second control signal, the ohmic behavior of the load circuit predominates, acquiring at least one measured variable, which is a function of the control signal and the ohmic and/or inductive components, in the case of activation of the load circuit using the first control signal and in the case of activation of the load circuit using the second control signal, ascertaining the deviations of the measured variables from measured variables which are expected on the basis of the nominal values of the inductive and ohmic components, classifying the state of the load circuit on the basis of the ascertained deviations.