摘要:
In embodiments, apparatuses, methods and storage media (transitory and non-transitory) are described that are associated with end-to-end datacenter performance control. In various embodiments, an apparatus for computing may receive a datacenter performance target, determine an end-to-end datacenter performance level based at least in part on quality of service data collected from a plurality of nodes, and send a mitigation command based at least in part on a result of a comparison of the end-to-end datacenter performance level determined to the datacenter performance target. In various embodiments, the apparatus for computing may include one or more processors, a memory, a datacenter performance monitor to receive a datacenter performance target corresponding to a service level agreement, and a mitigation module to send a mitigation command based at least in part on a result of a comparison of an end-to-end datacenter performance level to a datacenter performance target.
摘要:
In embodiments, apparatuses, methods and storage media (transitory and non-transitory) are described that are associated with end-to-end datacenter performance control. In various embodiments, an apparatus for computing may receive a datacenter performance target, determine an end-to-end datacenter performance level based at least in part on quality of service data collected from a plurality of nodes, and send a mitigation command based at least in part on a result of a comparison of the end-to-end datacenter performance level determined to the datacenter performance target. In various embodiments, the apparatus for computing may include one or more processors, a memory, a datacenter performance monitor to receive a datacenter performance target corresponding to a service level agreement, and a mitigation module to send a mitigation command based at least in part on a result of a comparison of an end-to-end datacenter performance level to a datacenter performance target.
摘要:
Technologies for identifying service functions that may be performed in parallel in a service function chain include a computing device for running one or more virtual machines for each of a plurality of service functions based on a preferred service function chain being selected. To identify which service functions may be performed in parallel, the computing device may determine which service functions are not required to be performed on a critical path of the service function chain and/or which service functions are not required to be performed in real-time. Additionally, selecting the preferred service function chain may be based on selection criteria.
摘要:
Technologies to monitor and manage platform, device, processor and power characteristics throughout a system utilizing a remote entity such as controller node. By remotely monitoring and managing system operation and performance over time, future system performance requirements may be anticipated, allowing system parameters to be adjusted proactively in a more coordinated way. The controller node may monitor, control and predict traffic flows in the system and provide performance modification instructions to any of the computer nodes and a network switch to better optimize performance. The target systems collaborate with the controller node by respectively monitoring internal resources, such as resource availability and performance requirements to provide necessary resources for optimizing operating parameters of the system. The controller node may collect local system information for one or all of the computer nodes to dynamically steer traffic to a specific set of computers for processing to meet desired performance and power requirements.
摘要:
Technologies for ensuring data integrity for multi-packet operations include a computing device and a remote computing device communicatively coupled via a network. The computing device is configured to perform a segmentation offload operation on an original network packet, compute a hash value on the payload of each segmented payload of the original network packet, and store the hash value and an indication into the segmented network packet that indicates the hash value is stored in the segmented network packet. The remote computing device is configured to extract the indication and the hash value from a received network packet in response to determining the indication indicates the hash value is stored in the segmented network packet, compute a hash value on the payload of received network packet, and determine an integrity of the payload based on a comparison of the extracted hash value and the computed hash value.
摘要:
Methods, apparatus, and computer platforms and architectures employing many-to-many and many-to-one peripheral switches. The methods and apparatus may be implemented on computer platforms having multiple nodes, such as those employing a Non-uniform Memory Access (NUMA) architecture, wherein each node comprises a plurality of components including a processor having at least one level of memory cache and being operatively coupled to system memory and operatively coupled to a many-to-many peripheral switch that includes a plurality of downstream ports to which NICs and/or peripheral expansion slots are operatively coupled, or a many-to-one switch that enables a peripheral device to be shared by multiple nodes. During operation, packets are received at the NICs and DMA memory writes are initiated using memory write transactions identifying a destination memory address. The many-to-many and many-to-one peripheral switches forwards the transaction packets internally within the switch based on the destination address such that the packets are forwarded to a node via which the memory address can be accessed. The platform architectures may also be configured to support migration operations in response to failure or replacement of a node.
摘要:
In general, in one aspect, the disclosure describes a method includes accessing data of an egress packet belonging to a flow, storing data associating the flow with at least one queue based on a source of the data of the egress packet. The method also includes accessing an ingress packet belonging to the flow, performing a lookup of the at least one queue associated with the flow, and enqueueing data of the ingress packet to the at least one queue associated with the flow.
摘要:
A method and system for providing controlled on-demand distribution of content via a centralized server and a peer-to-peer network have been described. The method may include receiving, at a server, a request from a client for content where the requesting client and the server are part of a peer-to-peer network. The server may then determine whether the requesting client has access rights to the content. If the requesting client has access rights to the content, then the server may determine one or more other clients on the peer-to-peer network that have the content available for download. The server may then select one or more clients from the one or more other clients and allow the requesting client to download the content from the selected one or more clients. Other embodiments have also been described and claimed.
摘要:
An embodiment may include circuitry to be comprised at least in part in a first host, and at least one process to be executed, at least in part, by the circuitry. The circuitry may comprise a first port and a second port. The at least one process may detect, at least in part, a first bandwidth condition of the first port, and may associate, at least in part, in response at least in part to the first bandwidth condition, the first port and the second port with a port team. The second port may have been, prior to being associated, at least in part, with the port team, in a relatively lower power state compared to a relatively higher power state. The second port may be in the relatively higher power state after the second port is associated, at least in part, with the port team.
摘要:
A method and apparatus for data transmission at energy efficient rates. An embodiment of an apparatus includes a port for the transfer of data. The port has an active state in which the port may transmit or receive data and an inactive state in which the port does not transmit or receive data. The apparatus further includes logic to control the transfer of data. The logic places the port into the active state for a first time period for the transfer of data and places the port into the inactive state for a second time period. The logic further prevents transfer of data during the inactive state.