Abstract:
A rail-rail comparator having an input stage with independent positive and negative differential voltage offset compensation tracks changes in Gm (transconductance) of the input stage. By tracking the changes in Gm (transconductance) of the input stage, hysteresis of the rail-rail comparator becomes insensitive to the input common mode voltage. A two-stage rail-rail comparator may be used for adding hysteresis to a second stage. The first stage of the two-stage rail-rail comparator operates at substantially unity gain. The second stage of the two-stage rail-rail comparator operates as a regular high gain amplifier with hysteresis. Additional circuitry tracks the Gm (transconductance) change of the first stage to make the second stage hysteresis insensitive to the input common mode voltage at the first stage. This also makes it easier to create a programmable hysteresis that is accurate over all input voltage values.
Abstract:
In one set of embodiments the invention comprises a highly accurate, low-power, compact size DAC utilizing charge redistribution techniques. Two complementary conversions may be performed and added together to form a final DAC output voltage by performing charge redistribution a first time, and again a second time in a complementary fashion, followed by a summing of the two charge distributions, in effect canceling the odd order capacitor mismatch errors. By canceling all odd order mismatch errors the accuracy of the DAC may become a function of the square of the mismatch of the two capacitors, resulting in greatly increased accuracy. When performing the complementary conversions for multiple bits, the sequence in which each of the two capacitors is charged may be determined to minimize the even-order errors, especially second-order errors. The DEM technique may be applied, in conjunction with the complementary conversions, with less oversampling than required by current DEM implementations, resulting in even-order errors being substantially reduced in addition to all odd-order errors being eliminated.
Abstract:
An accurate temperature monitoring system that uses a precision current control circuit to apply accurately ratioed currents to a semiconductor device, which may be a bipolar junction transistor (BJT), used for sensing temperature. A change in base-emitter voltage (ΔVBE) proportional to the temperature of the BJT may be captured and provided to an ADC, which may generate a numeric value corresponding to that temperature. The precision current control circuit may be configured to generate a reference current, capture the base current of the BJT, generate a combined current equivalent to a sum total of the base current and a multiple of the reference current, and provide the combined current to the emitter of the BJT. In response to this combined current, the collector current of the BJT will be equivalent to the multiple of the reference current. The ratios of the various collector currents conducted by the BJT may thus be accurately controlled, leading to more accurate temperature measurements.
Abstract:
A system and method for designing an integrated relaxation oscillator that exhibits reduced change in the frequency of oscillation caused by process variation. Improved sensitivity to component variation due to process shift is achieved through using more than one structure type when implementing the resistors affecting the RC time constant and threshold (trip point) voltages of the oscillator. Structure types are related to the fabrication process and for a CMOS process include, but are not limited to n-diffusion, p-diffusion, n-well, p-well, pinched n-well, pinched p-well, poly-silicon and metal. Each structure type exhibits statistically independent process variations, allowing for application of Lyapunov's extension of the Central Limit Theorem for statistically uncorrelated events to desensitize the effect from different possible causes. Thus, improvement in the performance of the oscillator may be achieved with a reduced trim requirement and without using external precision resistors.
Abstract:
An accurate temperature monitoring system that uses a precision current control circuit to apply accurately ratioed currents to a semiconductor device, which may be a bipolar junction transistor (BJT), used for sensing temperature. A change in base-emitter voltage (ΔVBE) proportional to the temperature of the BJT may be captured and provided to an ADC, which may generate a numeric value corresponding to that temperature. The precision current control circuit may be configured to generate a reference current, capture the base current of the BJT, generate a combined current equivalent to a sum total of the base current and a multiple of the reference current, and provide the combined current to the emitter of the BJT. In response to this combined current, the collector current of the BJT will be equivalent to the multiple of the reference current. The ratios of the various collector currents conducted by the BJT may thus be accurately controlled, leading to more accurate temperature measurements.
Abstract:
A system and method for designing an integrated relaxation oscillator that exhibits reduced change in the frequency of oscillation caused by process variation. Improved sensitivity to component variation due to process shift is achieved through using more than one structure type when implementing the resistors affecting the RC time constant and threshold (trip point) voltages of the oscillator. Structure types are related to the fabrication process and for a CMOS process include, but are not limited to n-diffusion, p-diffusion, n-well, p-well, pinched n-well, pinched p-well, poly-silicon and metal. Each structure type exhibits statistically independent process variations, allowing for application of Lyapunov's extension of the Central Limit Theorem for statistically uncorrelated events to desensitize the effect from different possible causes. Thus, improvement in the performance of the oscillator may be achieved with a reduced trim requirement and without using external precision resistors.