摘要:
This invention discloses an optical interconnect structure for routing and distributing optical signals on silicon chip carriers to realize high-density packaged optical interconnects for discrete GaAs optoelectronic IC's.
摘要:
Methods and systems for coherent distributed communication techniques using time reversal are disclosed. In one aspect, cooperating nodes of a cluster can move relative to each other and relative to an intended receiver of the nodes' data transmissions. The nodes are synchronized to a common time reference, and data for transmission from the cluster is distributed to the nodes. The intended receiver sends a sounding signal to the nodes. Each node receives the sounding signal, obtains the channel response between the intended receiver and itself, and time-reverses the channel response. Each node then convolves its time-reversed channel response with the data to obtain the node's convolved data. Each node waits a predetermined time following the time reference signal, as determined based on the common time reference. At the expiration of the predetermined time period, the nodes simultaneously transmit their convolved data.
摘要:
A micromachined plate 11, called a torsion plate, selectively pivots upon a substrate responsively to electrical force so as to move an attached micromirror 12 in a same plane; thereby to accurately selectively intercept, and to reflect, a light beam 2 that is moving parallel to the substrate; forming thus an optomechanical switch 1. The electrical force may be electromagnetic 3 in nature or, preferably, electrostatic. In various embodiments the pivoting torsion plate 11 with the micromirror 12 affixed may be (i) biased off the substrate by a three-dimensional structure 14 and/or by a “reshaped” torsion beam 11c, (ii) bent as plate 11d, and operated push OR pull, push AND pull, or push AND push, in a rocking operation, (iii) elevated above the substrate upon a self-assembling “micro-elevator structure” 16, and/or (iv) moved greatly in angular position by action of a “micro-flap” 11f. A new design spring-loaded landing electrode 18, and a torsion microhinge 131-134, further enhance performance. The micromachined, or Micro Electro Mechanical Systems (MEMS), optomechanical switch 1 so formed is both fast and accurate to switch light over large angles up to 180° while being highly resistant to sticking, or “stiction”.
摘要:
Methods and systems for coherent distributed communication techniques using time reversal are disclosed. In one aspect, cooperating nodes of a cluster can move relative to each other and relative to an intended receiver of the nodes' data transmissions. The nodes are synchronized to a common time reference, and data for transmission from the cluster is distributed to the nodes. The intended receiver sends a sounding signal to the nodes. Each node receives the sounding signal, obtains the channel response between the intended receiver and itself, and time-reverses the channel response. Each node then convolves its time-reversed channel response with the data to obtain the node's convolved data Each node waits a predetermined time following the time reference signal, as determined based on the common time reference. At the expiration of the predetermined time period, the nodes simultaneously transmit their convolved data
摘要:
A fast current-controlled polarization switching VCSEL with two independent intra-cavity p-contact electrodes and two independent intra-cavity n-contact electrodes positioned along the four sides of the symmetric aperture such that there are two independent p- and n-contact pairs placed on opposite sides of the aperture in a non-overlapping configuration. The anisotropy resulting from the unidirectional current flow causes the light output to be polarized perpendicular to the direction of current flow. A VCSEL driver circuit switches the polarization state of the output light by using the two orthogonal pairs of non-overlapping intra-cavity contacted electrodes to change the direction of current flow into the VCSEL aperture by 90 degrees.
摘要:
In at least one embodiment, a MEMS optomechanical switch in accordance with the present invention includes a substrate, a signal source capable of transmitting a radiation signal, an electrode coupled to the substrate, and a micromachined plate rotatably coupled to the substrate about a pivot axis. The switch further includes a micromirror having an orientated reflective surface, mounted to the micromachined plate and an electrical source coupled to at least one of the electrode and the micromachined plate.
摘要:
Various configurations of optomechanical matrix and broadcast switches are disclosed herein. One such optomechanical matrix switch includes a substrate and a plurality of optomechanical switching cells coupled thereto. Each of the optomechanical switching cells includes a mirror and an actuator. The matrix switch further includes an array of collimator elements, each of the collimator elements being in optical alignment with one of the optomechanical switching cells. Also disclosed herein is a distributed matrix switch including first and second optomechanical matrix switches. The first and second optomechanical matrix switches respectively include first and second pluralities of optomechanical switching cells mounted upon first and second substrates. A collimator array is interposed between the first and second matrix switches in optical alignment with the first and second pluralities of optomechanical switching cells.
摘要:
Techniques, apparatuses and systems for providing communications based on time reversal of a channel impulse response of a pulse in a transmission channel between a transmitter and a receiver to enhance reception and detection of a pulse at the receiver against various effects that can adversely affect and complicate the reception and detection of the pulse at the receiver.
摘要:
Techniques, apparatuses and systems for providing communications based on time reversal of a channel impulse response of a pulse in a transmission channel between a transmitter and a receiver to enhance reception and detection of a pulse at the receiver against various effects that can adversely affect and complicate the reception and detection of the pulse at the receiver.