摘要:
A metal induced crystallization process is provided which employs an amorphous silicon film precursor deposited by physical vapor deposition, wherein the precursor film does not readily undergo crystallization by partial solid phase crystallization. Using this physical vapor deposition amorphous silicon precursor film, the amorphous silicon film is transformed to polysilicon by metal induced crystallization wherein the crystalline growth occurs fastest at regions that have been augmented with a metal catalyst and proceeds extremely slowly, practically zero, at regions which bear no metal catalyst. Accordingly, by use of the physical vapor deposition amorphous silicon precursor film in the process of the present invention, the metal induced crystallization process may take place at higher annealing temperatures and shorter annealing times without solid phase crystallization taking place. The process has a faster throughput than previous metal induced crystallization processes, results in a polysilicon film having virtually no catalyst impurities remaining in the film, and results in a film having uniform material characteristics. The resulting polysilicon film may be utilized in thin film transistors or liquid crystal displays.
摘要:
A method of physical vapor deposition includes selecting a target material; mixing at least two gases to form a sputtering gas mixture, wherein a first sputtering gas is helium and a second sputtering gas is taken from the gases consisting of neon, argon krypton, xenon and radon; forming a plasma in the sputtering gas mixture atmosphere to sputter atoms from the target material to the substrate thereby forming a layer of target material on the substrate; and annealing the substrate and the deposited layer thereon. An improved physical vapor deposition vacuum chamber includes a target held in a target holder, a substrate held in a substrate holder, a plasma arc generator, and heating rods. A sputtering gas feed system is provided for introducing a mixture of sputtering gases into the chamber; as is a vacuum mechanism comprising at least one turbomolecular pump for evacuating the chamber to a pressure of less than 16 mTorr during deposition. The method and apparatus are particularly suited for forming thin film transistors and liquid crystal displays having thin film transistors therein.
摘要:
A method of physical vapor deposition includes selecting a target material; mixing at least two gases to form a sputtering gas mixture, wherein a first sputtering gas is helium and a second sputtering gas is taken from the gases consisting of neon, argon krypton, xenon and radon; forming a plasma in the sputtering gas mixture atmosphere to sputter atoms from the target material to the substrate thereby forming a layer of target material on the substrate and annealing the substrate and the deposited layer thereon. An improved physical vapor deposition vacuum chamber includes a target held in a target holder, a substrate held in a substrate holder, a plasma arc generator, and heating rods. A sputtering gas feed system is provided for introducing a mixture of sputtering gases into the chamber; as is a vacuum mechanism comprising at least one turbomolecular pump for evacuating the chamber to a pressure of less than 16 mTorr during deposition. The method and apparatus are particularly suited for forming thin film transistors and liquid crystal displays having thin film transistors therein.
摘要:
A system and method are provided to sequentially deposit a silicon dioxide base coat barrier layer adjacent a thin silicon film, to minimize the formation of water and —OH radicals. Both the base coat and thin silicon films are sputter to eliminate hydrogen chemistries. Further, the sputter processes are conducted sequentially, without breaking the vacuum seat to minimize the absorption of water in the base coat layer that conventionally occurs between deposition steps. This process eliminates the total number of process steps required, as there is no longer a need for furnace annealing the base coat before the deposition of the thin silicon film, and no longer a need for a dehydrogenation annealing step after the deposition of the thin silicon film.
摘要:
The present invention concerns a method of forming multi-layers such as base-coat and active layers for TFTs. In accordance with the preferred embodiment of the present invention, a first layer is formed on a transparent substrate using a physical vapor deposition. And a second layer is sequentially formed using a physical vapor deposition on the first layer without breaking vacuum.The present invention simplifies the TFT fabrication while decreasing the water or hydrogen content within multilayers including a base-coat (BC) layer.
摘要:
A method is provided to optimize the channel characteristics of thin film transistors (TFTs) on polysilicon films. The method is well suited to the production of TFTs for use as drivers on liquid crystal display devices. Regions of polycrystalline silicon can be formed with different predominant crystal orientations. These crystal orientations can be selected to match the desired TFT channel orientations for different areas of the device. The crystal orientations are selected by rotating a mask pattern to a different orientation for each desired crystal orientation. The mask is used in connection with lateral crystallization ELA processes to crystallize deposited amorphous silicon films.
摘要:
A thin film transistor includes an active silicon layer deposited by physical vapor deposition (PVD), wherein a silicon precursor is doped with impurities prior to use as a target in the PVD chamber, wherein the precursor has a resistivity in the range of about 0.5 &OHgr;-cm
摘要:
A method is provided to optimize the channel characteristics of thin film transistors (TFTs) on polysilicon films. The method is well suited to the production of TFTs for use as drivers on liquid crystal display devices. Regions of polycrystalline silicon can be formed with different predominant crystal orientations. These crystal orientations can be selected to match the desired TFT channel orientations for different areas of the device. The crystal orientations are selected by rotating a mask pattern to a different orientation for each desired crystal orientation. The mask is used in connection with lateral crystallization ELA processes to crystallize deposited amorphous silicon films.
摘要:
A method is provided to optimize the channel characteristics of thin film transistors (TFTs) on polysilicon films. The method is well suited to the production of TFTs for use as drivers on liquid crystal display devices. The method is also well suited to the production of other devices using polysilicon films. Regions of polycrystalline silicon can be formed with different predominant crystal orientations. These crystal orientations can be selected to match the desired TFT channel orientations for different areas of the device. The crystal orientations are selected by selecting different mask patterns for each of the desired crystal orientation. The mask patterns are used in connection with lateral crystallization ELA processes to crystallize deposited amorphous silicon films.
摘要:
A method of forming a thin film device includes preparing a substrate; forming a silicon target having predetermined impurities therein; depositing a layer of amorphous silicon by physical vapor deposition from the target; and crystallizing the amorphous silicon layer to form a polysilicon layer. The method of the invention is particularly suited to the formation of thin film transistors and liquid crystal displays incorporating thin film transistors.