摘要:
A method is provided for crystallizing a silicon film in liquid crystal display (LCD) fabrication. The method comprises: forming an amorphous silicon film having a thickness in the range of 100 to 1000 Angstroms (Å); irradiating the silicon film with a laser pulse having a pulse width of 50 nanoseconds (ns) or greater, as measured at the full-width-half-maximum (FWHM), using a beamlet width in the range of 3 to 20 microns; and, in response to irradiating the silicon film, laterally growing crystal grains. In one example, irradiating the silicon film may include irradiating with a pulse having a pulse width in the range between 30 and 300 ns FWHM, and an energy density in the range from 200 to 1300 millijoules per square centimeter (mJ/cm2).
摘要:
A method has been provided for forming a polycrystalline silicon (p-Si) film with a small amount of hydrogen. Such a film has been found to have excellent sheet resistance, and it is useful in the fabrication of liquid crystal display (LCD) panels made from thin film transistors (TFTs). The low hydrogen content polycrystalline silicon films are made from introducing a small amount of hydrogen gas, with Ar, during the sputter deposition of an amorphous silicon film. The hydrogen content in the film is regulated by controlling the deposition temperatures and the volume of hydrogen in the gas feed during the sputter deposition. The polycrystalline silicon film results from annealing the low hydrogen content amorphous silicon film thus formed.
摘要:
A metal induced crystallization process is provided which employs an amorphous silicon film precursor deposited by physical vapor deposition, wherein the precursor film does not readily undergo crystallization by partial solid phase crystallization. Using this physical vapor deposition amorphous silicon precursor film, the amorphous silicon film is transformed to polysilicon by metal induced crystallization wherein the crystalline growth occurs fastest at regions that have been augmented with a metal catalyst and proceeds extremely slowly, practically zero, at regions which bear no metal catalyst. Accordingly, by use of the physical vapor deposition amorphous silicon precursor film in the process of the present invention, the metal induced crystallization process may take place at higher annealing temperatures and shorter annealing times without solid phase crystallization taking place. The process has a faster throughput than previous metal induced crystallization processes, results in a polysilicon film having virtually no catalyst impurities remaining in the film, and results in a film having uniform material characteristics. The resulting polysilicon film may be utilized in thin film transistors or liquid crystal displays.
摘要:
A method of physical vapor deposition includes selecting a target material; mixing at least two gases to form a sputtering gas mixture, wherein a first sputtering gas is helium and a second sputtering gas is taken from the gases consisting of neon, argon krypton, xenon and radon; forming a plasma in the sputtering gas mixture atmosphere to sputter atoms from the target material to the substrate thereby forming a layer of target material on the substrate; and annealing the substrate and the deposited layer thereon. An improved physical vapor deposition vacuum chamber includes a target held in a target holder, a substrate held in a substrate holder, a plasma arc generator, and heating rods. A sputtering gas feed system is provided for introducing a mixture of sputtering gases into the chamber; as is a vacuum mechanism comprising at least one turbomolecular pump for evacuating the chamber to a pressure of less than 16 mTorr during deposition. The method and apparatus are particularly suited for forming thin film transistors and liquid crystal displays having thin film transistors therein.
摘要:
A method is provided to produce liquid crystal displays (LCDs) on polycrystalline films having a single predominant crystal orientation. A layer of amorphous silicon is deposited over a substrate to a thickness suitable for producing a desired crystal orientation. Lateral-seeded excimer laser annealing (LS-ELA) is used to crystallize a region of the amorphous silicon to form a polycrystalline film with a preferred crystal orientation. In an embodiment of the method, the polycrystalline film is polished. A pixel region is formed over a portion of the substrate using either amorphous silicon or polycrystalline silicon. A circuit region is formed over the polycrystalline film.
摘要:
A method is provided to produce thin polycrystalline films having a single predominant crystal orientation. The method is well suited to the production of films for use in production of thin film transistors (TFTs). A layer of amorphous silicon is deposited over a substrate to a thickness suitable for producing a desired crystal orientation. Lateral-seeded excimer laser annealing (LS-ELA) is used to crystallize the amorphous silicon to form a film with a preferred crystal orientation. The crystallized film is then polished to a desired thickness for subsequent processing.
摘要:
A method has been provided for etching adjoining layers of indium tin oxide (ITO) and silicon in a single, continuous dry etching process. A conventional dry etching gas, such as HI, is used to etch ITO using RF or plasma energy. When the silicon layer underlying the ITO layer is reached, oxygen or nitrogen is added to etching gas to improve the selectivity of ITO to silicon. In some aspects of the invention an etch-stop layer is formed in the silicon layer. A specific example of fabricating a bottom gate thin film transistor (TFT) is also provided where adjoining layers of source metal, ITO, and channel silicon are etched in the same dry etch step.
摘要:
The invention provides an apparatus for reducing, or eliminating, ambient air in connection with an excimer laser annealing process. Nozzles are provided to direct a flow of gas, preferably helium, neon, argon or nitrogen, at a region overlying the target area of an amorphous silicon layer deposited on an LCD substrate. The nozzles direct a flow of gas at sufficient pressure and flow rate to remove ambient air from the region overlying the target area. With the ambient air, especially oxygen, removed, the laser can anneal the amorphous silicon to produce polycrystalline silicon with less oxygen contamination. In a preferred embodiment, an exhaust system is also provided to remove the gas.
摘要:
A method of physical vapor deposition includes selecting a target material; mixing at least two gases to form a sputtering gas mixture, wherein a first sputtering gas is helium and a second sputtering gas is taken from the gases consisting of neon, argon krypton, xenon and radon; forming a plasma in the sputtering gas mixture atmosphere to sputter atoms from the target material to the substrate thereby forming a layer of target material on the substrate and annealing the substrate and the deposited layer thereon. An improved physical vapor deposition vacuum chamber includes a target held in a target holder, a substrate held in a substrate holder, a plasma arc generator, and heating rods. A sputtering gas feed system is provided for introducing a mixture of sputtering gases into the chamber; as is a vacuum mechanism comprising at least one turbomolecular pump for evacuating the chamber to a pressure of less than 16 mTorr during deposition. The method and apparatus are particularly suited for forming thin film transistors and liquid crystal displays having thin film transistors therein.
摘要:
A digital-to-time converter (DTC) is provided, made from a plurality of series-connected cells. Each cell has an input interface to accept a signal, a control interface to accept a digital command, a delayed signal path, a minimum delay signal path, and an output interface. The signal path is selected in response to the command. The time delay associated with the delayed signal path of each cell can be varied, so that the plurality of series-connected cells is able to provide a large range of delay combinations. For example, if there are n series-connected cells, then the jth series-connected cell, where j varies from 1 to n, conducts the signal through 2j MOS gates in the delayed signal path. Assuming a digital control word with n bit places, the jth series-connected cell accepts the jth bit place of the control word to select a delay path.