Coating for chamber particle reduction

    公开(公告)号:US11251024B2

    公开(公告)日:2022-02-15

    申请号:US16933926

    申请日:2020-07-20

    Abstract: Embodiments generally relate to a chamber component to be used in plasma processing chambers for semiconductor or display processing. In one embodiment, a chamber component includes a textured surface having a surface roughness ranging from about 150 microinches to about 450 microinches and a coating layer disposed on the textured surface. The coating layer may be a silicon layer having a purity ranging from about 90 weight percent to about 99 weight percent, a thickness ranging from about 50 microns to about 500 microns, and an electrical resistivity ranging from about 1 E-3 ohm*m to about 1 E3 ohm*m. The coating layer provides strong adhesion for materials deposited in the plasma processing chamber, which reduces the materials peeling from the chamber component. The coating layer also enables oxygen plasma cleaning for further reducing materials deposited on the chamber component and provides the protection of the textured surface located therebelow.

    Spin orbit torque MRAM and manufacture thereof

    公开(公告)号:US10756259B2

    公开(公告)日:2020-08-25

    申请号:US16290621

    申请日:2019-03-01

    Abstract: The bottom-pinned spin-orbit torque (SOT) MRAM devices are fabricated to form high quality interfaces between layers including the spin-orbit torque (SOT) layer and the free layer of the magnetic tunnel junction (MTJ) by forming those layers under vacuum, without breaking vacuum in between formation of the layers. An encapsulation layer is used as an etch stop and to protect the free layer. The encapsulation layer is etched back prior to the deposition of a metal layer. The metal layer forms a plurality of metal lines that are electrically connected to two or more sides of the SOT layer and are electrically coupled to the SOT layer to transfer current through the SOT layer. The metal lines are not in contact with a top surface of the SOT layer which has a dielectric layer disposed thereon.

    Methods to form top contact to a magnetic tunnel junction

    公开(公告)号:US11374170B2

    公开(公告)日:2022-06-28

    申请号:US16141470

    申请日:2018-09-25

    Abstract: Embodiments of the disclosure relate to methods for fabricating structures used in memory devices. More specifically, embodiments of the disclosure relate to methods for fabricating MTJ structures in memory devices. In one embodiment, the method includes forming a MTJ structure, depositing a encapsulating layer on a top and sides of the MTJ structure, depositing a dielectric material on the encapsulating layer, removing the dielectric material and the encapsulating layer disposed on the top of the MTJ structure by a chemical mechanical planarization (CMP) process to expose the top of the MTJ structure, and depositing a contact layer on the MTJ structure. The method utilizes a CMP process to expose the top of the MTJ structure instead of an etching process, which avoids damaging the MTJ structure and leads to improved electrical contact between the MTJ structure and the contact layer.

    Back end memory integration process

    公开(公告)号:US11239086B2

    公开(公告)日:2022-02-01

    申请号:US16396226

    申请日:2019-04-26

    Abstract: Embodiments described herein relate to substrate processing methods. More specifically, embodiments of the disclosure provide for an MRAM back end of the line integration process which utilizes a zero mark for improved patterning alignment. In one embodiment, the method includes fabricating a substrate having at least a bottom contact and a via extending from the bottom contact in a first region and etching a zero mark in the substrate in a second region apart from the first region. The method also includes depositing a touch layer over the substrate in the first region and the second region, depositing a memory stack over the touch layer in the first region and the second region, and depositing a hardmask over the memory stack layer in the first region and the second region.

Patent Agency Ranking