Abstract:
A method of detecting the presence, absence and/or level of a plurality of analytes-of-interest in a sample, the method comprisES: (a) providing a plurality of objects, each of the plurality of objects having a predetermined, measurable and different imagery characteristic, and further having a predetermined and specific affinity to one analyte of the plurality of analytes-of-interest, each the imagery characteristic corresponding to one the predetermined specific affinity, hence each the imagery characteristic corresponds to one analyte of the plurality of analytes-of interest; (b) providing at least one affinity moiety having a predetermined and specific affinity or predetermined and specific affinities to the plurality of analytes-of-interest, each the affinity moiety having a predetermined, measurable response to light; (c) combining the objects, the at least one affinity moiety and the sample under conditions for affinity binding; and (d) simultaneously determining, for each object of the plurality of objects an imagery characteristic, and for at least a portion of the at least one affinity moiety a response to light, thereby detecting the presence, absence and/or level of the plurality of analytes-of-interest in the sample.
Abstract:
A synchronizing imaging apparatus to obtain images from an object undergoing variations according to a cycle with the apparatus comprising an acquisition device to acquire a plurality of pre-images at respective phases over each one of a plurality of cycles, and an image matcher to match together the pre-images from different ones of said cycles according to respective phases within said cycles, to create a representation of said cycle.
Abstract:
A method of functional brain mapping of a subject is disclosed. The method is effected by (a) illuminating an exposed cortex of a brain or portion thereof of the subject with incident light; (b) acquiring a reflectance spectrum of each picture element of at least a portion of the exposed cortex of the subject; (c) stimulating the brain of the subject; (d) during or after step (c) acquiring at least one additional reflectance spectrum of each picture element of at least the portion of the exposed cortex of the subject; and (e) generating an image highlighting differences among spectra of the exposed cortex acquired in steps (b) and (d), so as to highlight functional brain regions. Algorithms for calculating oxygen saturation and blood volume maps which can be used to practice the method are also disclosed. Systems for practicing the method are also disclosed.