摘要:
A marine propulsion drive unit is provided with two energy absorbing structures, one comprising a crushable or deformable nose cone or leading edge of a driveshaft housing and the other comprising a frangible interface that allows the drive unit to separate from the hull of a marine vessel. The crushable or deformable nose cone is configured to absorb energy at relatively low impact velocities with submerged structures and the frangible interface is configured to absorb energy and then detach from the hull of the marine vessel at higher impact velocities.
摘要:
A marine drive has a break-away mount mounting first and second sections of the drive and breaking-away in response to a given underwater impact against the second section to protect the first section and the vessel.
摘要:
Various embodiments of reduced-size vehicles such as all-terrain vehicles (ATVs) and utility vehicles (UVs) are disclosed herein. In at least some embodiments, the vehicles include frames that are wider near the front and rear sections of the vehicles than within the mid-sections of the vehicles. This, in combination with the use of shock-absorbers that are substantially vertically oriented, allows for the opening-up of large interior cavities within the front and rear sections of the vehicles within which can be positioned large front and rear internal compartments that can provide storage/carrying capacity as well as added buoyancy for the vehicle, among other things. Also, in at least some embodiments, the vehicles can include special cooling and/or exhaust systems having components that are positioned substantially within the mid-sections of the vehicles, thus further increasing the amounts of space available for the cavities/compartments within the front and rear sections of the vehicles.
摘要:
Various embodiments of reduced-size vehicles such as all-terrain vehicles (ATVs) and utility vehicles (UVs) are disclosed herein. In at least some embodiments, the vehicles include frames that are wider near the front and rear sections of the vehicles than within the mid-sections of the vehicles. This, in combination with the use of shock-absorbers that are substantially vertically oriented, allows for the opening-up of large interior cavities within the front and rear sections of the vehicles within which can be positioned large front and rear internal compartments that can provide storage/carrying capacity as well as added buoyancy for the vehicle, among other things. Also, in at least some embodiments, the vehicles can include special cooling and/or exhaust systems having components that are positioned substantially within the mid-sections of the vehicles, thus further increasing the amounts of space available for the cavities/compartments within the front and rear sections of the vehicles.
摘要:
Various embodiments of reduced-size vehicles such as all-terrain vehicles (ATVs) and utility vehicles (UVs) are disclosed herein. In at least some embodiments, the vehicles include frames that are wider near the front and rear sections of the vehicles than within the mid-sections of the vehicles. This, in combination with the use of shock-absorbers that are substantially vertically oriented, allows for the opening-up of large interior cavities within the front and rear sections of the vehicles within which can be positioned large front and rear internal compartments that can provide storage/carrying capacity as well as added buoyancy for the vehicle, among other things. Also, in at least some embodiments, the vehicles can include special cooling and/or exhaust systems having components that are positioned substantially within the mid-sections of the vehicles, thus further increasing the amounts of space available for the cavities/compartments within the front and rear sections of the vehicles.
摘要:
An outboard motor for a marine vessel application, and related methods of making and operating same, are disclosed herein. In at least one embodiment, the outboard motor includes a horizontal-crankshaft engine in an upper portion of the outboard motor, positioned substantially positioned above a trimming axis of the outboard motor. In at least another embodiment, first, second and third transmission devices are employed to transmit rotational power from the engine to one or more propellers at a lower portion of the outboard motor. In at least a further embodiment, the outboard motor is made to include a rigid interior assembly formed by the engine, multiple transmission devices, and a further structural component. In further embodiments, the outboard motor includes numerous cooling, exhaust, and/or oil system components, as well as other transmission features.
摘要:
An engine is provided with a cavity so that a catalyst member can be contained within the engine when an engine head portion is attached to an engine block portion. This attachment of the engine head portion and engine block portion, which forms the engine structure, captivates the catalyst member within the cavity without the need for additional brackets and housing structures. The cavity is preferably located above or at the upper regions of first and second exhaust conduits which direct exhaust upwardly from the engine head portion toward the cavity and downwardly from the cavity within the engine block portion. The first and second exhaust conduits are preferably formed as integral structures within the engine head portion and engine block portion.
摘要:
The sensor geometry for improved package stress isolation is disclosed. A counterbore on the backing plate improves stress isolation properties of the sensor. The counterbore thins the wall of the backing plate maintaining the contact area with the package. The depth and diameter of the counterbore can be adjusted to find geometry for allowing the backing plate to absorb more package stresses. Thinning the wall of the backing plate make it less rigid and allows the backing plate to absorb more of the stresses produced at the interface with the package. The counterbore also keeps a large surface area at the bottom of the backing plate creating a strong bond with the package.
摘要:
Various embodiments of reduced-size vehicles such as all-terrain vehicles (ATVs) and utility vehicles (UVs) are disclosed herein. In at least some embodiments, the vehicles include frames that are wider near the front and rear sections of the vehicles than within the mid-sections of the vehicles. This, in combination with the use of shock-absorbers that are substantially vertically oriented, allows for the opening-up of large interior cavities within the front and rear sections of the vehicles within which can be positioned large front and rear internal compartments that can provide storage/carrying capacity as well as added buoyancy for the vehicle, among other things. Also, in at least some embodiments, the vehicles can include special cooling and/or exhaust systems having components that are positioned substantially within the mid-sections of the vehicles, thus further increasing the amounts of space available for the cavities/compartments within the front and rear sections of the vehicles.
摘要:
A pressure sensor includes a sensing element fabricated on an N-type epitaxial layer grown on a P-type substrate, a P-type isolation region located around the edge of the sensing element die and in contact with the P-type substrate, and a conductive elastomeric seal engaging the P-type isolation region prevents shorting of the conductive elastomeric seal with the N-type epitaxial layer of the sensing element die. A method of making a pressure sensor comprises growing an n-type epitaxy layer on a p-type substrate wafer, resulting in a pressure sensor die and substrate having an edge, obtaining a mask adapted for fabricating an isolation diffusion layer around the edge using P-type material, and creating an isolation layer diffusion using P-type doping material around the edge using the mask. A conductive elastomeric seal can then be placed over the sensor die to make electrical contact to the package.