Abstract:
An aqueous system for forming a coating on a substrate includes a polycarbodiimide having the structure: Each of R1 and R2 is independently chosen from Each n is independently a number from 1 to 20, each m is independently a number from 1 to 100, each Y is independently an alkoxy or polyalkoxy group having (w) oxygen atoms, wherein each w is independently at least 1 and each z is independently a number from 0 to (w−1). In addition, x, Y, and a total of said CnH2n+1 groups are present in a ratio of from (4 to 5):(0 to 1.5):(0 to 4.5. The aqueous system includes water and a reactive compound having at least two reactive groups independently chosen from —OH, —NHR3, —NH2, —COOH, and —SH, and combinations thereof, wherein R3 is an alkyl group or aromatic group having 1 to 20 carbon atoms.
Abstract:
A method of forming an isocyanate-functional polymer component includes forming a first mixture by mixing a recycled polyurethane article and a first isocyanate component having isocyanate-functional groups. The first mixture is heated to a temperature sufficient to transform the recycled polyurethane article from a solid form to a liquid form and react the liquid recycled polyurethane component with the first isocyanate component to form an isocyanate-functional polymer component having an isocyanate-functional group content greater than zero and less than isocyanate-functional group content of the first isocyanate component. The formed isocyanate-functional polymer component may then be used for forming a polyurethane article or polyurethane foam article that is the reaction product of the formed isocyanate-functional polymer component, a second isocyanate component and an isocyanate-reactive component having hydroxyl-functional groups.
Abstract:
A hot melt adhesive (HMA), which is solid at room temperature, comprises the reaction product of 5 to 25% by weight of an isocyanate component having an NCO content of from about 20 to about 50% by weight, 75 to 85% by weight of a polyester, and 1 to 10% by weight of a hydroxy-polymer having an OH number of from about 40 to about 50. A method of forming the adhesive comprises the step of combining the isocyanate component, polyester, and hydroxy-polymer to form the adhesive. The adhesive can be used for various purposes, such as for forming an adhesive layer which adhesively couples surfaces together.
Abstract:
This disclosure provides a solvent-borne system for forming an n-acyl urea coating on a substrate. In one embodiment, the solvent-borne system comprises a polycarbodiimide-polyurethane hybrid. The solvent-borne system also comprises an acid functional polymer and an organic solvent, and comprises less than or equal to 10 weight percent of water based on a total weight of said solvent-borne system. The solvent-borne system also comprises less than about 100 parts by weight of toluene diisocyanate per one million parts by weight of the solvent-borne system.
Abstract:
A composition for forming a polyiso-urea includes a capped polycarbodiimide and a polyol. The capped polycarbodiimide comprises the reaction product of a diisocyanate and a monoisocyanate in the presence of an oxygen scavenger and a carbodiimidization catalyst and in the absence of solvent, has 0.25 wt. % or less of free isocyanate groups, and is a liquid at 25° C. A polyiso-urea comprises the reaction product of the capped polycarbodiimide and the polyol.
Abstract:
Modified isocyanate compositions having improved properties are provided. The compositions may be formed from the reaction of a isocyanate component, which is a compound terminated with at least one isocyanate group, and an organic acid derivative having the formula (RO)n(M)(E)(EH)3-n, wherein M is nitrogen, phosphorus, arsenic, antimony, or bismuth, n is 1 or 2, each E is independently oxygen, sulfur, selenium, or tellurium, each R is independently hydrogen, an alkyl group, a cyclic aryl group, an acyclic aryl group, a halogen-substituted alkyl group, a halogen-substituted cyclic aryl group or a halogen-substituted acyclic aryl group and wherein the ratio of the weight of the isocyanate component to the combined weight of the organic acid derivative and the isocyanate component is from 0.7 to 0.95. The compositions can be utilized in a variety of applications and are adapted to prolonged storage and transportation. Methods of preparing such compositions are also provided.
Abstract:
A composition for forming a polyiso-urea includes a capped polycarbodiimide and a polyol. The capped polycarbodiimide comprises the reaction product of a diisocyanate and a monoisocyanate in the presence of an oxygen scavenger and a carbodiimidization catalyst and in the absence of solvent, has 0.25 wt. % or less of free isocyanate groups, and is a liquid at 25° C. A polyiso-urea comprises the reaction product of the capped polycarbodiimide and the polyol.
Abstract:
A process of preparing a post-modified polycarbodiimide, the process includes combining a diisocyanate, a moisture scavenger, a monoisocyanate, and a catalyst in a reaction vessel; and heating the reaction vessel to a temperature and a time sufficient to form a capped polycarbodiimide wherein the capped polycarbodiimide has 0.25 wt % or less of free isocyanate groups; and the combining and heating are conducted in the absence of a solvent.
Abstract:
A hot melt adhesive (HMA), which is solid at room temperature, comprises the reaction product of 5 to 25% by weight of an isocyanate component having an NCO content of from about 20 to about 50% by weight, 75 to 85% by weight of a polyester, and 1 to 10% by weight of a hydroxy-polymer having an OH number of from about 40 to about 50. A method of forming the adhesive comprises the step of combining the isocyanate component, polyester, and hydroxy-polymer to form the adhesive. The adhesive can be used for various purposes, such as for forming an adhesive layer which adhesively couples surfaces together.